Introduction to Sequence Analysis using

EMBOSS

Chapter 1
What is EMBOSS?

Since 1988, the sequence analysis package EGCG has provided extensions
to the market leading commercial sequence analysis package GCG. EGCG
development was a collaboration of groups within EMBnet and elsewhere.

EGCG provided support for core sequence activities at the Sanger Centre,
and has been the basis of new sequence analysis software for internal use, as
well as providing advanced features in use at approximately 150 sites, and
for more than 10,000 users of EMBnet national services.

That project has reached the limits of what can be achieved using the
GCG package. Specifically, it is no longer possible to distribute academic
software source code which uses the GCG libraries and has become difficult
even to distribute binaries.

As a result, the former EGCG developers have been designing a totally
new generation of academic sequence analysis software. This has resulted in
the present EMBOSS project.

1.1 So, what is EMBOSS?

EMBOSS is a new, free Open Source software analysis package specially
developed for the needs of the molecular biology (e.g. EMBnet) user com-
munity. The software automatically copes with data in a variety of formats
and even allows transparent retrieval of sequence data from the web. Also,
as extensive libraries are provided with the package, it is a platform to allow
other scientists to develop and release software in true open source spirit.
EMBOSS also integrates a range of currently available packages and tools

for sequence analysis into a seamless whole. EMBOSS breaks the historical
trend towards commercial software packages.
The EMBOSS suite:

Provides a comprehensive set of sequence analysis programs (more than
150)

Provides a set of core software libraries (AJAX and NUCLEUS)
Integrates other publicly available packages

Encourages the use of EMBOSS in sequence analysis training.
Encourages developers elsewhere to use the EMBOSS libraries.

Supports all common Unix platforms including Linux, Digital Unix,
Irix and Solaris.

Within EMBOSS you will find over 150 programs (applications). These
are just some of the areas covered:

Sequence alignment
Rapid database searching with sequence patterns
Protein motif identification, including domain analysis

EST analysis

Nucleotide sequence pattern analysis, for example to identify CpG is-
lands.

Simple and species-specific repeat identification

Codon usage analysis for small genomes

Rapid identification of sequence patterns in large scale sequence sets.
Presentation tools for publication

And much more.

More information about EMBOSS can be found at
http://www.uk.embnet.org/Software/EMBOSS/

2

1.2 Working with EMBOSS

1.2.1 How this tutorial is organised

We assume that you are familiar with basic Unix commands for manipulating
files and directories. EMBOSS contains many more applications than we can
describe in the time available. We will introduce some of these and also show
you how to find out about the others. There are many exercises for you to
try, and we’ll present the results you will see so that you know all is going
well. Please feel free to experiment with the programs! That is definitely the
best way to learn what they can do.

Much of the text in this document is what you will see on your screen; the
Unix prompt is represented as unix % - don’t type this in! The commands
you need to type are printed in bold. If no input is specified, just press

return. Pressing return will also dismiss graphics windows. The symbol :
means we have truncated the program output to save space.

1.3 wossname: a first EMBOSS application

All EMBOSS programs run from the Unix command line. We’ll introduce the
basics with a specific example: the EMBOSS utility wossname will produce
a list of all the various EMBOSS applications.

Exercise: wossname
Type wossname at the unix 7% prompt:
unix % wossname

EMBOSS programs start up with a one line description and then prompt
you for information; in this case you see:

Finds programs by keywords in their one-line documentation
Keyword to search for: protein
SEARCH FOR ’PROTEIN’

antigenic Finds antigenic sites in proteins

backtranseq Back translate a protein sequence

checktrans Reports STOP codons and ORF statistics of a protein sequence
emowse Protein identification by mass spectrometry

digest Protein proteolytic enzyme or reagent cleavage digest
eprotdist Protein distance algorithm

eprotpars Protein parsimony algorithm

fuzzpro Protein pattern search

fuzztran Protein pattern search after translation

garnier GARNIER predicts protein secondary structure.

iep Calculates the isoelectric point of a protein

octanol Displays protein hydropathy

oddcomp Finds protein sequence regions with a biased composition
patmatdb Search a protein sequence database with a motif
patmatmotifs Search a motif database with a protein sequence
pepnet Displays proteins as a helical net

pepstats Protein statistics

pepwheel Shows protein sequences as helices

pepwindow Displays protein hydropathy

pepwindowall Displays protein hydropathy of a set of sequences
preg Regular expression search of a protein sequence
pscan Scans proteins using PRINTS

sigcleave Reports protein signal cleavage sites

topo Draws an image of a transmembrane protein

Many EMBOSS programs have additional, optional parameters that offer
more functionality. As a rule, you can force the program to present this in-
formation to you by appending the flag -opt to the program name as follows:

unix % wossname -opt

You will now be presented with a variety of additional options. The de-
fault value for each option is given in square brackets, and you can either
press return to accept the default, or enter the value you require:

Keyword to search for: protein
Output program details to a file [stdout]: myfile
Format the output for HTML [N]: Y

String to form the first half of an HTML link:
String to form the second half on an HTML link:
Output only the group names [N]:

Output an alphabetic list of programs [N]:

Use the expanded group names [N]:

This set of commands will cause wossname to write out the list of pro-
grams to a file called myfile, in HTML format ready for viewing in a web
browser.

To produce a list of all the current EMBOSS programs, start up wossname
again but instead of specifying a keyword, press return. A list of programs
will scroll onto your screen, divided up into groups according to their func-
tions. Scroll up and down to see them all. Can you think of how to get this
data into a file? (Hint: use -opt)

If you append the flag -help to the name of any EMBOSS program you
will see a list of all the command flags available for this program. For exam-
ple:

unix % wossname -help

We’ll see some more flags later. Let’s move on to some sequence analysis

Chapter 2

Working with sequences

Throughout this tutorial, we’re going to look at members of the rhodopsin
family of G-protein coupled receptors. The general principles are, of course,
applicable to any sequences you would like to analyse. We will be working
with sequences retrieved from EMBL and SwissProt but you can also use
EMBOSS with sequences in text files.

We will begin with two EMBL sequences whose identifiers are XL23808
and XLRHODOP; these sequences are the genomic and the corresponding
cDNA sequence for Xenopus laevis rhodopsin.

You need to tell EMBOSS where to read the sequence(s) you want to
analyse. EMBOSS can read sequences either from text files or directly from
a sequence database. The easiest way to see this is with examples.

2.1 Retrieving sequences from databases

The EMBOSS programs can read sequences from various sequence databases
provided the sequence is referred to in the form database:entry. This for-
mat is known as a USA (Uniform Sequence Address). Further information
on USA’s can be found on the EMBOSS website. You can see the databases
we have set up for you using the program showdb:

Exercise: showdb

As an example, here are the first few databases available using EMBOSS
at the HGMP. Your local site will probably have a different selection of

databases depending on what the local EMBOSS maintainer has set up.

unix % showdb

Displays information on the currently available databases

#Name Type 1ID
nbrf P OK
pir P 0K
remtrembl P 0K
sptrembl P 0K
sw P OK
swissprot P 0K
trarc P OK
trembl P OK
tremblnew P OK

showdb writes out a simple table displaying the names, contents and access

methods for the databases.

ID allows programs to extract a single explicitly named entry from the

Qry

OK
OK
OK
OK
OK
OK
OK
OK
OK

All

OK
OK
OK
OK
OK
OK
OK
OK
OK

Comment

PIR/NBRF

PIR/NBRF

REMTREMBL sequences
SPTREMBL sequences
SWISSPROT sequences
SWISSPROT sequences
TREMBL ARC sequences
TREMBL sequences

New TREMBL sequences

database, for example: embl:x13776

Query indicates that programs can extract a set of matching wildcard

entry names. For example: swissprot:pax*_human

All allows programs to analyse all the entries in the database sequen-
tially. For example: embl: *

You can access EMBL by either identifier eg xlrhodop, or accession number

eg LO7770. Let’s try these now.

2.1.1 seqret

seqret reads in a sequence, and writes it out, in effect being the EMBOSS
equivalent of readseq. It is probably the most commonly used EMBOSS

program.

Exercise: seqret

unix % seqret

Reads and writes (returns) a sequence

7

Input sequence: embl:xlrhodop
Output sequence [xlrhodop.fastal:
unix % more xlrhodop.fasta

>XLRHODOP LO7770 Xenopus laevis rhodopsin mRNA,complete cds.
ggtagaacagcttcagttgggatcacaggcttctagggatcctttgggcaaaaaagaaac
acagaaggcattctttctatacaagaaaggactttatagagectgctaccatgaacggaac

Now let’s retrieve the sequence using its the accession number:

unix 7 seqret

Reads and writes (returns) a sequence

Input sequence: embl:L0O7770

Output sequence [xlrhodop.fastal: xlrhodop2.fasta

unix % more xlrhodop2.fasta

>XLRHODOP LO7770 Xenopus laevis rhodopsin mRNA,complete cds.
ggtagaacagcttcagttgggatcacaggcttctagggatcctttgggecaaaaaagaaac
acagaaggcattctttctatacaagaaaggactttatagagctgctaccatgaacggaac

You could also run this example entirely from the command line:
unix % seqret embl:xlrhodop -outseq xlrhodop.fasta

By default, seqret writes the sequence in fasta format. You can also tell it
to use a different output format:

unix % seqret embl:L07770 -outseq gcg::xlrhodop.gcg
As an alternative to specifying the format in the output sequence USA

you can use the —osformat qualifier. This command is identical in action to
the previous one:

unix % seqret embl:L07770 -outseq xlrhodop.gcg -osformat gcg

unix % more xlrhodop.gcg

' 'NA_SEQUENCE 1.0
Xenopus laevis rhodopsin mRNA, complete cds.
XLRHODOP Length: 1684 Type: N Check: 9453 ..
1 ggtagaacag cttcagttgg gatcacaggc ttctagggat cctttgggcea

51 aaaaagaaac acagaaggca ttctttctat acaagaaagg actttataga

A list of the various formats that EMBOSS understands is given at
http://www.uk.embnet.org/Software/EMBOSS /Usa/formats.html

2.2 Reading sequences from files

EMBOSS can also read sequences from files. For example, if we wanted to re-
format the fasta sequence we have downloaded into gcg format, we could say:

unix 7 seqret xlrhodop.fasta -outseq gcg::myseq.gcg
or

unix % seqret xlrhodop.fasta -outseq myseq.gcg -osformat gcg

2.3 Getting information about sequences

2.3.1 infoseq

infoseq is a small utility to list the sequences’ USA, name, accession num-
ber, type (nucleic or protein), length, percentage G+C (for nucleic), and/or
description. We can view this information for our sequence:

unix % infoseq embl:xlrhodop

Displays some simple information about sequences

USA Name Accession Type Length GC Description
embl-id:XLRHODOP XLRHODOP LO7770 N 1684 45.72 X.laevis rhodopsin

2.3.2 Sequence annotation

Sequence databases do not just contain sequences, they also contain a great

deal of associated information (annotation) about the sequence entries. By

default EMBOSS does not return all this information when you run seqret.
To retrieve the full entry for a sequence in it’s original database form you

can use the utility entret.

unix % entret embl:x123808

Reads and writes (returns) flatfile entries

Output file [x123808.entret]:

unix % more x123808.entret

ID XL23808 standard; DNA; VRT,; 4734 BP.

XX

AC U23808;

XX

SV U23808.1

XX

DT 23-APR-1995 (Rel. 43, Created)

DT 04-MAR-2000 (Rel. 63, Last updated, Version 7)

XX

DE Xenopus laevis rhodopsin gene, complete cds.

XX

KW .

XX

0S Xenopus laevis (African clawed frog)

0C Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Amphibia;

0C Batrachia; Anura; Mesobatrachia; Pipoidea; Pipidae; Xenopodinae;
Xenopus.

XX

There is a lot of information here. Near the bottom, just above the se-

10

quence itself is a list of features associated with the sequence. A feature is any
defined region of the sequence that has a particular description associated
with it. We can view a simple graphical overview of the sequence features
using the utility showfeat:

unix % showfeat embl:x123808
Show features of a sequence.
Output file [x123808.showfeat]:

unix % more x123808.showfeat

XL23808
Xenopus laevis rhodopsin gene, complete cds.
| | 4734
| ————— e > source
[————- > mRNA
[——=> CDS
CDS
mRNA
> CDS
-> mRNA
| —=> CDS
| —=> mRNA
|> CDS
| ——————- > mRNA

To retrieve a sequence with all its features we can use the program seqretallfeat
instead of seqret. This has some properties of which to be aware.

unix % seqretallfeat embl:x123808

Reads and writes (returns) one or more sequences

Output sequence [x123808.fastal:

This looks pretty much like running seqret except that a second file has

been created, unknown.gff. Take a look at this file:
unix % more unknown.gff

##gff-version 2.0

11

##date 2003-02-21

##Type DNA XL23808

XL23808 EMBL source 1 4734 0.000 + . Sequence
"taxon:8355" ; organism "Xenopus laevis"

XL23808 EMBL mRNA 1181 1650 0.000 + . Sequence
"0x100" ; product "rhodopsin"

XL23808 EMBL mRNA 1899 2067 0.000 + . Sequence
"0x104"

XL23808 EMBL mRNA 2669 2834 0.000 + . Sequence
"0x104"

"XL23808.1"

"XL23808.2"

"XL23808.2"

"XL23808.2"

2

2

2

2

; db_xref \
; FeatFlags \
; FeatFlags \

; FeatFlags \

This is a list of the features in the database entry in GFF (General Feature
Format). You can find out more about feature formats on the EMBOSS web

site.

In order to change the feature formats and filename we need to use associated
qualifiers when running seqretallfeat. Lets save the features in EMBL

format in the file rhodop.features:

unix % seqretallfeat embl:x123808 -offormat embl -ofname rhodop.features

Reads and writes (returns) one or more sequences
Output sequence [x123808.fasta]:

And the file appears as expected

We could use a Uniform Feature Object (UFO) instead of the ~offormat

and -ofname qualifiers.

unix % seqretallfeat embl:x123808 -oufo embl::rhodop.features

2.4 Using multiple sequences

EMBOSS programs can also deal with multiple sequences. A quick search
using SRS will tell you that the SwissProt sequence corresponding to the
EMBL sequence we’ve been looking at has the identifier OPSD_XENLA. To
retrieve the information about all the other OPSD sequences in SwissProt

we can use the wild card character:

12

unix %

infoseq

Displays some simple information about sequences

Input sequence(s):

USA
sw-id:
sw-id:
sw-id:
sw-id:
sw-id:
sw-id:
sw-id:
sw-id:
sw-id:
sw-id:

OPSD_ABYKO
OPSD_ALLMI
OPSD_AMBTI
OPSD_ANGAN
OPSD_ANOCA
OPSD_APIME
OPSD_ASTFA
OPSD_BATMU
OPSD_BATNI
OPSD_BOVIN

sw:opsd_*
Name

OPSD_ABYKO
OPSD_ALLMI
OPSD_AMBTI
OPSD_ANGAN
OPSD_ANOCA
OPSD_APIME
OPSD_ASTFA
OPSD_BATMU
OPSD_BATNI
OPSD_BOVIN

Accession Type

042294
P52202
Q90245
Q90214
P41591
Q17053
P41590
042300
042301
P02699

P

v vJv~ww9yw=wvy'w'vouvo

Length Description

289
352
354
352
352
377
352
289
289
348

RHODOPSIN (FRAGMENT) .
RHODOPSIN.
RHODOPSIN.
RHODOPSIN, DEEP-SEA
RHODOPSIN.
RHODOPSIN.
RHODOPSIN.
RHODOPSIN (FRAGMENT) .
RHODOPSIN (FRAGMENT) .
RHODOPSIN.

We can also use the wild card character on the command line, but here

we must enclose the specification in quotation marks:

unix % infoseq “sw:opsd_*”

You can use seqret to retrieve multiple sequences into a file; for exmaple:

unix % seqret “sw:opsd_a*” -outseq opsd_a.seqs

retrieves all the sequences whose identifiers start “opsd_a” into a file called
opsd_a.seqgs. If we wanted to have each sequence in a separate file, we could

type:

unix % seqret “sw:opsd_a*” -ossingle

Filenames are generated based on the identifiers of the sequences.

2.5 Listfiles

It is also possible to use list files within EMBOSS. Instead of containing the
sequences themselves, a list file contains ”references” to sequences - so, for
example, you might include database entries, the names of files containing
sequences, or even the names of other list files. You’ll need to use a text
editor such as pico to create the appropriate list files if you’d like to try this

yourself.

13

Here’s an example of a valid list file, called seq.1list:

opsd_abyko.fasta
sw:opsd_xenla
sw:opsd_c*
Q@another_list

If you have created this file then you can read it using:
unix % more seq.list

This may look a bit odd, but it’s really very straightforward; the file
contains:

e opsd_abyko.fasta - this is the name of a sequence file. The file is read
in from the current directory.

e sw:opsd xenla - this is a reference to a specific sequence in the Swis-
sProt database

e sw:opsd_c* - this represents all the sequences in SwissProt whose iden-
tifiers start with “opsd_c”

e another_list - this is the name of a second list file

Notice the @ in front of the last entry. This is the way you tell EMBOSS
that this file is a list file, not a regular sequence file. As an alternative to
using the @ you can write list:filename instead. Let’s demonstrate this
by using this file as the input to seqret and get the sequences into a new
file, perhaps for use in a multiple sequence alignment (see Section 5.3).

First of all, we’ll make the file opsd_abyko.fasta using seqret:
unix % seqret sw:opsd_abyko -outseq opsd_abyko.fasta

Now let’s look at another_list. Note that its structure is very similar
to that of seq.list but this time only contains database references:

sw:opsd_anoca
sw:opsd_apime

sw:opsd_astfa

After you have created this file you will be able to view it using
unix % more another list

14

Finally, let’s run seqret with seq.list (not forgetting the @ sign) and

look at the results:
unix % seqret @seq.list -outseq outfile

unix % more outfile

>0PSD_ABYKO 042294 RHODOPSIN (FRAGMENT) .
YLVNPAAYAALGAYMFLLILIGFPINFLTLYVTLEHKKLRTPLNYILLNLAVANLFMVLG
GFTTTMYTSMHGYFVLGRLGCNLEAFFATLGGEIALWSLVVLAIERWIVVCKPISNFRFT
EDHAIMGLAFTWVMALACAVPPLVGWSRYIPEGMQCSCGVDYYTRAEGFNNESFVIYMFI
VHFLIPLSVIFFCYGRLLCAVKEAPAAQQESETTQRAEKEVSRMVVIMVIGFLVCWLPYA
SVAWWIFCNQGSDFGPIFMTLPSFFAKSAATIYNPMIYICMNKQFRHCMI
>0PSD_XENLA P29403 RHODOPSIN.
MNGTEGPNFYVPMSNKTGVVRSPFDYPQYYLAEPWQYSALAAYMFLLILLGLPINFMTLF
VTIQHKKLRTPLNYILLNLVFANHFMVLCGFTVTMYTSMHGYFIFGPTGCYIEGFFATLG
GEVALWSLVVLAVERYIVVCKPMANFRFGENHAIMGVAFTWIMALSCAAPPLFGWSRYIP
EGMQCSCGVDYYTLKPEVNNESFVIYMFIVHFTIPLIVIFFCYGRLLCTVKEAAAQQQES
LTTQKAEKEVTRMVVIMVVFFLICWVPYAYVAFYIFTHQGSNFGPVFMTVPAFFAKSSAT
YNPVIYIVLNKQFRNCLITTLCCGKNPFGDEDGSSAATSKTEASSVSSSQVSPA
>0PSD_CAMAB Q17292 RHODOPSIN.
MMSIASGPSHAAYTWASQGGGFGNQTVVDKVPPEMLHMVDAHWYQFPPMNPLWHALLGEFV
IGVLGVISVIGNGMVIYIFTTTKSLRTPSNLLVVNLAISDFLMMLCMSPAMVINCYYETW
VLGPLFCELYGLAGSLFGCASIWTMTMIAFDRYNVIVKGLSAKPMTINGALIRILTIWFF
TLAWTIAPMFGWNRYVPEGNMTACGTDYLTKDLFSRSYILIYSIFVYFTPLFLIIYSYFF
ITQAVAAHEKNMREQAKKMNVASLRSAENQSTSAECKLAKVALMTISLWFMAWTPYLVIN
YSGIFETTKISPLFTIWGSLFAKANAVYNPIVYGISHPKYRAALFQKFPSLACTTEPTGA
DTMSTTTTVTEGNEKPAA

>0PSD_CAMHU 018312 RHODOPSIN (FRAGMENT) .
LHMIHLHWYQYPPMNPMMYPLLLIFMLFTGILCLAGNFVTIWVFMNTKSLRTPANLLVVN
LAMSDFLMMFTMFPPMMVTCYYHTWTLGPTFCQVYAFLGNLCGCASIWTMVFITFDRYNV
IVKGVAGEPLSTKKASLWILSVWVLSTAWCIAPFFGWNHYVPEGNLTGCGTDYLSEDILS
RSYLYIYSTWVYFLPLAITIYCYVFITIKAVAAHEKGMRDQAKKMGIKSLRNEEAQKTSAE
CRLAKNAMTTVALWFIAWTPCLLINWVGMFARSYLSPVYTIWGYVFAKANAVYNPIVYATI
S

Note that the output file contains all the sequences we specified in seq.1list,

as we had expected.

15

Chapter 3

Pairwise sequence alignment

This chapter is about sequence similarity. Let us start with a warning: there
is no unique, precise, or universally applicable notion of similarity. An align-
ment is an arrangement of two sequences which shows where the two se-
quences are similar, and where they differ. An optimal alignment, of course,
is one that exhibits the most significant similarities, and the least differences.
Broadly, there are three categories of methods for sequence comparison.

e Segment methods compare all windows (overlapping segments of a pre-
determined length (e.g., 10 amino acids)) from one sequence to all
segments from the other. This is the approach used in dotplots.

e Optimal global alignment methods allow the best overall score for the
comparison of the two sequences to be obtained, including a consider-
ation of gaps.

e Optimal local alignment algorithms seek to identify the best local sim-
ilarities between two sequences but, unlike segment methods, include
explicit consideration of gaps.

3.1 Dotplots

The most intuitive representation of the comparison between two sequences
uses dot-plots. One sequence is represented on each axis and significant
matching regions are distributed along diagonals in the matrix.

16

Exercise: Making a dotplot

unix % dottup

DNA sequence dot plot

Input sequence: embl:x123808
Second sequence: embl:xlrhodop
Word size [4]: 10

Graph type [x11]:

A window will pop up on your screen that should look something like
this:

dottup (18/05/01)

1600 |
1400 |
1200 | _
1000 | . /
800 o z

600 | ' yZ

400 —
200 —

XLRHODOP

| T I T I T I T I
0 500 1000 1500 2000 2500 3000 3500 4000 4500

XL23808

The diagonal lines represent areas where the two sequences align well.
You can see that there are five clear diagonals. You will remember that
we are aligning genomic and cDNA - these five diagonals represent the five
exons of the gene! If you look at the original EMBL entry for the genomic
sequence using SRS, you will see that the annotated entry says that there
are five exons in this gene. So our results are in agreement.

The settings we have used for this example are those that give the best
results. dottup looks for exact matches between sequences. As we expect the
exon regions from the genomic sequence to exactly match the cDNA sequence
we can use longer word lengths as we should still get exact matches. This
gives a very clean plot. If you were to match the cDNA sequence against
that of a related sequence, e.g. the rhodopsin from mouse (embl:m55171)

17

then you wouldn’t expect long exact matches so should use a shorter word
length.

Exercise: Examining dotplot parameters

Repeat the previous example comparing the frog rhodopsin cDNA against
the mouse genomic DNA:

unix % dottup embl:m55171 embl:xlrhodop

DNA sequence dot plot

Word size [4]: 10

Graph type [x11]:

Repeat this for both comparisons using different word sizes. What do you
notice?

Which word sizes give the clearest plot?

Why are the diagonals in the first and last exons not so clear? (hint: look
back at the results for showfeat)

The dotplot doesn’t give us any detailed sequence information. For this,
we need to use different programs. The algorithms we will be using are more
rigorous than those used for searching databases; so even if you have re-
trieved a sequence from a database using something like BLAST), it will be
well worth your while performing a careful pairwise alignment afterwards.
The basic idea behind the sequence alignment programs is to align the two
sequences in such a way as to produce the highest score - a scoring ma-
trix is used to add points to the score for each match and subtract them
for each mismatch. The matrices used for nucleic acid alignments tend to
involve fairly simple match/mismatch scoring schemes, while the matrices
commonly used for scoring protein alignments are more complex, with scores
designed to reflect similarity between the different amino acids rather than
simply scoring identities. Over time various mutations occur in sequences;
the scoring matrices attempt to cope with mutations, but insertions and
deletions require some extra parameters to allow the introduction of gaps
in the alignment. There are penalties both for the creation of gaps and for
the extension of existing ones; the default gap parameters given in alignment
programs have been found to be empirically correct with test sequences but
you should experiment with different gap penalties.

18

3.2 Global alignment

A global alignment is one that compares the two sequences over their en-
tire lengths, and is appropriate for comparing sequences that are expected
to share similarity over the whole length. The alignment maximises regions
of similarity and minimises gaps using the scoring matrices and gap param-
eters provided to the program. The EMBOSS program needle is an im-
plementation of the Needleman-Wunsch [3] algorithm for global alignment;
the computation is rigorous and needle can be time consuming to run if the
sequences are long.

Exercise: needle

unix % needle

Needleman-Wunsch global alignment.
Input sequence: embl:xlrhodop
Second sequence: embl:x123808

Gap opening penalty [10.0]:

Gap extension penalty [0.5]:
Output file [xlrhodop.needle]:

unix % more xlrhodop.needle

Global: XLRHODOP vs XL23808
Score: 7471.00

XLRHODOP
XL23808 1 cgtaactaggaccccaggtcgacacgacaccttccctttcccagt 45
XLRHODOP
XL23808 46 tatttcccctgtagacgttagaaggggaaggggtgtacttatgte 90
XLRHODOP

XL23808 91 acgacgaactacgtccttgactacttagggccagagagacgaggt 135

19

Note that as this is a global alignment, the entire genomic sequence is given
in the output, even in regions where it does not line up with the cDNA. Scroll
down the output until you reach an area of alignment.

XLRHODOP 1 ggtagaacagcttcagttgggatcacaggettcta 35
FEEETEEEEEEEEE e e e e e et ey
XL23808 1171 tgggtcatactgtagaacagcttcagttgggatcacaggcttcta 1215

XLRHODOP 36 gggatcctttgggcaaaaaagaaacacagaaggcattctttctat 80
FEEEEEEEEEEEeee e
XL23808 1216 gggatcctttgggcaaaaaagaaacacagaaggecattctttctat 1260

XLRHODOP 81 acaagaaaggactttatagagctgctaccatgaacggaacagaag 125
FECTEEEEEEreer et e e e e e e e e e e e e e e e e e
XL23808 1261 acaagaaaggactttatagagctgctaccatgaacggaacagaag 1305

XLRHODOP 126 gtccaaatttttatgtccccatgtccaacaaaactggggtggtac 170

FECEEEEEEEEree e e e e e e e e e e e e e e
XL23808 1306 gtccaaatttttatgtccccatgtccaacaaaactggggtggtac 1350

We’ve only shown part of the output as it is very long. You should look
at the whole output and note that there are five aligned regions that repre-
sent the five exons as predicted from the dotplot.

Look carefully at the boundaries of the aligned regions. We know, as bi-
ologists, that intron/exon boundaries have a conserved gt..ag pair of din-
ucleotides delimiting the splice sites. It is most unlikely that needle has
correctly aligned these boundaries as it has no understanding of models of
gene structure. The scoring method it uses does not specifically treat splice
sites. The program est2genome has an extra scoring factor that allows it to
do a better job of aligning intron/exon boundaries.

20

3.3 Local alignment

As we mentioned above, global sequence alignment algorithms align sequences
over their entire lengths. You do need to think about whether that type of
alignment makes sense for your sequences. For our example, where we ex-
pect each exon to be represented in the sequences and in the same order, it
has worked well - however, how well do you think this approach would work
with, for example, multidomain proteins that share one domain but not oth-
ers, or sequences where there have been regions of duplication? A second
comparison method, local alignment, searches for regions of local similarity
and need not include the entire length of the sequences. Local alignment
methods are very useful for scanning databases or when you do not know
that the sequences are similar over their entire lengths. The EMBOSS pro-
gram water is a rigorous implementation of the Smith Waterman algorithm
for local alignments [4].

Exercise: water

unix 7% water

Smith-Waterman local alignment.
Input sequence: embl:xlrhodop
Second sequence: embl:x123808
Gap opening penalty [10.0]:

Gap extension penalty [0.5]:
Output file [xlrhodop.water]:
unix % more xlrhodop.water

Local: XLRHODOP vs XL23808
Score: 7448.00

XLRHODOP 2 gtagaacagcttcagttgggatcacaggcttctagggatcctttg 46

FEEEEEEEEEEr e
XL23808 1182 gtagaacagcttcagttgggatcacaggecttctagggatcctttg 1226

XLRHODOP 47 ggcaaaaaagaaacacagaaggcattctttctatacaagaaagga 91

FEEEEEEEEEEr e
XL23808 1227 ggcaaaaaagaaacacagaaggcattctttctatacaagaaagga 1271

21

XLRHODOP 92 ctttatagagctgctaccatgaacggaacagaaggtccaaatttt 136
EEEEEEEEEEE e
XL23808 1272 ctttatagagctgctaccatgaacggaacagaaggtccaaatttt 1316

XLRHODOP 137 tatgtccccatgtccaacaaaactggggtggtacgaagcccatte 181
RN RN RN AR R RN RRRRRRRRN
XL23808 1317 tatgtccccatgtccaacaaaactggggtggtacgaageccatte 1361

XLRHODOP 182 gattaccctcagtattacttagcagagccatggcaatattcageca 226

FEEEEEEEEEErreererer e e e e e e e e e e e e e e e e e e e
XL23808 1362 gattaccctcagtattacttagcagagccatggcaatattcageca 1406

XLRHODOP 227 ctggctgcttacatgttcctgetcatecctgettgggttaccaate 271
FEEEEEEEEEErr e e rer e e e e e e e e e e e e e e e e e e
XL23808 1407 ctggctgcttacatgttcctgetcatectgettgggttaccaate 14561

XLRHODOP 272 aacttcatgaccttgtttgttaccatccagcacaagaaactcaga 316

FECEEEEEEEErr e
XL23808 1452 aacttcatgaccttgtttgttaccatccagcacaagaaactcaga 1496

XLRHODOP 317 acacccctaaactacatcctgetgaacctggtatttgecaatcac 361

FEEEEEEEEEEEreererer e e e e e e e e e e e e e e e e e e e
XL23808 1497 acacccctaaactacatcctgetgaacctggtatttgecaatcac 1541

Scroll down the entire output and again, note that five exons have been
found.

In these cases we have not had to adjust the gap parameters from the
defaults used in these programs. You should be aware that you may need to
do so with your own sequences.

EMBOSS contains other pairwise alignment programs - stretcher and
matcher are global and local alignment programs respectively that are less
rigorous than needle and water and therefore run more quickly; they may be
useful for database searching. supermatcher is designed for local alignments
of very large sequences and is even less rigorous in its implementation. The
documentation pages for all these programs can be found at
http://www.uk.embnet.org/Software/EMBOSS /Apps/index.html

22

Chapter 4

Protein analysis

This chapter will introduce you to a few of the EMBOSS applications that
can be used to analyse protein sequences. Obviously, the pairwise sequence
comparison methods illustrated in the previous chapter with nucleic acid
sequences can also be used with protein sequences.

4.1 Identifying the ORF

In this section we’ll show you some simple EMBOSS applications for trans-
lating your cDNA sequence into protein. You should be aware that gene
structure prediction is a tough problem, and recognising exon/intron bound-
aries in genomic sequence is not easy; for now, rather than deal with that
aspect of prediction, we’ll use the cDNA sequence in our practical. First, we
need to identify our open reading frame. We can get a rapid visual overview
of the distribution of ORF's in the six frames of our sequence using the EM-
BOSS program plotorf.

Exercise: plotorf

unix % plotorf
Plot potential open reading frames
Input sequence: embl:xlrhodop
Graph type [x11]:
You will see a graphical output that shows the potential open reading
frames (ORF) in all six frames:

23

500 1000 1500

L L
500 1000 1500

The longest ORF is in frame 2 from around position 100 to 1200. We will
now identify the exact start and end points for our translation. To do this,
we can use the EMBOSS program getorf.

Exercise: getorf

unix % getorf -opt

Finds and extracts open reading frames (ORFs)
Input sequence: embl:xlrhodop

OQutput sequence [xlrhodop.orf]:

Genetic codes

Standard

Standard (with alternative initiation codons)
Vertebrate Mitochondrial

Yeast Mitochondrial

Mold, Protozoan, Coelenterate Mitochondrial and Mycoplasma/Spiroplasma
Invertebrate Mitochondrial

Ciliate Macronuclear and Dasycladacean

: Echinoderm Mitochondrial

10 : Euplotid Nuclear

11 : Bacterial

©O© O O W N +- O

24

12 : Alternative Yeast Nuclear

13 : Ascidian Mitochondrial
14 : Flatworm Mitochondrial
15 : Blepharisma Macronuclear

Code to use [0]:

Minimum nucleotide size of ORF to report [30]:

Type of sequence to output

Translation of regions between STOP codons
Translation of regions between START and STOP codons
Nucleic sequences between STOP codons

Nucleic sequences between START and STOP codons
Nucleotides flanking START codons

Nucleotides flanking initial STOP codons
Nucleotides flanking ending STOP codons

Type of output [0]: 3

DO WN - O

Notice that you can specify the organism whose codon usage table is
most appropriate for your sequence, and you can also choose the type of
information that is reported to you. In our case, we are simply interested in
the positions of the start and stop codons for this sequence.

plotorf is just a graphical representation of the textual information pro-
duced by getorf. Since we asked for all ORFs above a minimum size to
be reported, getorf is telling us about a number of potential ORFs. We
know from plotorf that our ORF will be in the region 100 to 1200, so scroll
through the output file, zlrhodop.orf, until you identify this. What are the
actual start and end positions?
unix % more xIlrhodop.orf

>XLRHODOP_7 [110 - 1171] Xenopus laevis rhodopsin mRNA,complete cds.
atgaacggaacagaaggtccaaatttttatgtccccatgtccaacaaaactggggtggta
cgaagcccattcgattaccctcagtattacttagcagagccatggcaatattcagecactg

4.2 'Translating the sequence

From the previous exercise you should have found that the region to be
translated is from 110 to 1171 in our cDNA sequence. Now we can use

25

transeq to translate that region and use the translated peptide for some
further analyses.

Exercise: transeq

Let’s practice using command line flags (qualifiers) again. The new ones
here are -sbegin and -send. These allow you to specify a subregion of
your sequence; in this case we will ask transeq to translate only the part
of embl:x1rhodop that we have identified as the coding region. You should
remember -outseq from Chapter 2.

unix J% transeq embl:xlrhodop -sbegin 110 -send 1171 -outseq xI-
rhodop.pep

Translate nucleic acid sequences

unix % more xIlrhodop.pep

>XLRHODOP+1 Xenopus laevis rhodopsin mRNA, complete cds.
MNGTEGPNFYVPMSNKTGVVRSPFDYPQYYLAEPWQYSALAAYMFLLILLGLPINFMTLF
VTIQHKKLRTPLNYILLNLVFANHFMVLCGFTVTMYTSMHGYFIFGQTGCYIEGFFATLG
GEVALWSLVVLAVERYMVVCKPMANFRFGENHAIMGVAFTWIMALSCAAPPLFGWSRYIP
EGMQCSCGVDYYTLKPEVNNESFVIYMFIVHFTIPLIVIFFCYGRLLCTVKEAAAQQQES
ATTQKAEKEVTRMVVIMVVFFLICWVPYAYVAFYIFTHQGSNFGPVFMTVPAFFAKSSAT
YNPVIYIVLNKQFRNCLITTLCCGKNPFGDEDGSSAATSKTEASSVSSSQVSPA

We saw earlier that the SwissProt entry for this protein has the identifier
opsd_xenla; test your understanding of EMBOSS so far by using needle to
compare your translated product with the database sequence. Compare your
findings with the SwissProt entry using SRS.

USA for partial sequences

As an alternative to -sbegin and -send you can specify start, end and
whether to reverse complement as part of the sequence USA. The format
to use is db:sequence[start:end] (or db:sequence[start:end:r] to reverse
complement). Start must be smaller than end. If you want to use the actual
start and end then use the value 0 instead of positions. If you want to count
from the end of the sequence rather than the beginning then use negative
numbers.

26

Examples

Residues 10-20 sw:opsd_xenla[10:20]
The last ten residues sw:opsd_xenla[-10:0]
The last twenty residues bar 5 sw:opsd_xenla[-20:-6]

bases 134-458 reverse complement embl:xlrhodop[134:458:r]

4.3 Secondary structure prediction

The question of how DNA sequence determines specific protein structure has
been a constant source of fascination and speculation since the problem was
identified. It remains an extremely difficult area; generally referred to as the
“folding problem”, it is one of the major outstanding questions in molecular
biology. Many attempts have been made to predict the tertiary structure of
a protein from its sequence. These fall into two distinct approaches:

e One approach is to set up a realistic mechanical model of the protein
chain and simulate the folding process.

e Other approaches are empirical as they proceed by inference from
known tertiary structures.

The approach to structure prediction based on mechanical models has
the innate (possibly fatal) attraction that, in theory, it requires no prior
knowledge of protein tertiary structure. If successful it could be applied
uniformly to all sequences. By contrast, all methods based on inference
from known structures are inherently limited in their applicability. They
will only be appropriate for predicting structures similar to those which were
used in the inference process. Fortunately there are often biophysical or
biochemical clues that help make this decision and these are often integrated
in the methods for structure prediction.

Currently the best way to achieve reasonable secondary structure pre-
dictions is to run a variety of prediction algorithms over your sequence and
determine a consensus among the results. There are various web servers that
will do these multiple analyses for you, including PIX at the HGMP and
Jpred at the University of Dundee:
http://www.hgmp.mrc.ac.uk/Registered/Webapp/pix/
http://www.compbio.dundee.ac.uk/ www-jpred

27

As yet, coverage of secondary structure prediction within EMBOSS is
limited. More algorithms will be added to enable the conesensus approach
described above. We'll take a look now at some of the predictions you can
currently perform using EMBOSS.

4.3.1 pepinfo

pepinfo produces information on amino acid properties (size, polarity, aro-
maticity, charge etc). Hydrophobicity profiles are also available and are useful
for locating turns, potential antigenic peptides and transmembrane helices.
Various algorithms are employed including the Kyte and Doolittle hydropa-
thy measure - this curve is the average of a residue-specific hydrophobicity
index over a window of nine residues. When the line is in the upper half of
the frame, it indicates a hydrophobic region, and when it is in the lower half,
a hydrophilic region.

Exercise: pepinfo

unix % pepinfo xlrhodop.pep

Plots simple amino acid properties in parallel
Graph type [x11]:

Output file [pepinfo.out]:

You will see two screens (press return to move from the first to the sec-
ond screen) that look like this:

28

Thy msidues I SLEHODOR+1 from peatdon 1 4o 354

Try rmldum.
Small residuen In ¥IRHODOR+1 from postion 1 1a 354
et Small renlduen
Alphatk: ek In XLRHEOEA+1 from podifon 1 ko 364
Lk Alphatic realduen
Arumatk radiduse i SLFHODOR1 fram position 1 4o 35+

N T I T T T Ly | E

sromutia redduss

Mon—pelar mfdunn Ty SLEHGDOR 1 from poation 1 b 354

Nen—polar rasiduss
Falr rafduan In SLBHGOOR+ 1 fram, pestion 1 b 354
o Pelar rodduna

Chargad rasiduss b XLPHEDER+1 fram posttion 1 to 354

§36I L1 I I - 1 iiim I (W E

Charged medusn

Pontie radduan In SLRHEDGR+1 fram pesttion 1 bo 354

§36II n 1| L L L1 11 W Y I | Y O | 2

Pty rariduse

Hegntlee rendomm In WLAHODOP1 from podtion 1 bn 354

§36I L1 | Ly L1n 1] E

Fgatie reihae

Hydropathy plot of residues 1 to 354 of sequence ®LRHODOP+1 using kyts & Dodlittle hydropathy parameters

T T T
3 m

°

[

-

B -

2

& [

s -

2

= = L L

L
10 200 00
Residue Rumber

Hydropathy plot of residues 1 to 354 of sequence XLRHGDOP+1 using OHM Hydropathy parameters (Swest & Eisenberg

s [

1G0

Hydrapathy value
-0500 05 10

2 00
Residue MNumber

Hydropathy plot of residues 1 to 354 of sequence ¥LRHODOP+1 using Gonsensus parameters (Eigenberg st al)

Hydropathy value
-5 0.0 05 1.0

L L L
1co0 z2o0 =00
Residue MNumber

29

4.3.2 Predicting transmembrane regions

The results from the pepinfo hydropathy plot showed seven highly hy-
drophobic regions within xlrhodop.pep. Could these be transmembrane
domains? We can use the EMBOSS program tmap to investigate this possi-
bility:

Exercise: tmap

unix % tmap

Displays membrane spanning regions
Sequences file to be read in: xIrhodop.pep
Graph type [x11]:

You will see a window that looks like this:

Tmap

.6

1

1.4

-
O

0.6

0 100 200 300
Residue number

30

The bars across the top represent areas where transmembrane segments
are predicted. Taken in combination with the results from pepinfo, we can
see that there may be seven transmembrane helices in this protein. This cor-
responds well with both the SwissProt entry for this sequence (opsd_xenla)
and with some information we will gather about patterns and profiles in the
next chapter.

There are various other programs you can use to analyse your peptide
sequence - to find out what is available, try rerunning wossname as we did in
the first chapter.

31

Chapter 5

Patterns, profiles and multiple
sequence alignment

We have not covered BLAST or FASTA searching in this tutorial because
they are not currently part of EMBOSS; these searches are offered at many
web sites worldwide. However, database searches are an important part
of the bioinformatician’s arsenal. When we screen a new sequence against a
database of known sequences, we are trying to answer the following questions:

e Is there any protein of known structure that has sufficient similarity to
the sequence of the unknown protein to suggest a familial relationship?

e If not, which sequence of any known proteins is most similar to the
sequence of the unknown protein?

If we can identify a relationship to a protein of known structure, it is
possible to infer that the new protein shares a common structure with its
relative and to assign its general fold. However, what if the homologue has no
known structure? If its function has been identified then we might expect our
unknown protein to have a similar or related function. However, exceptions
do exist. A classic example is lysozyme, which shares around 50% sequence
identity and 70% sequence similarity with a-lactalbumin. The two proteins
also share similar folds, but their functions are entirely different: the two key
catalytic residues of lysozyme are not conserved in a-lactalbumin, and the
acidic calcium binding motif important to the function of a-lactalbumin is
not present in most lysoszymes. It is essential that you confirm any computer
based predictions with benchwork.

32

What can you do if sequence similarity alone does not satisfactrily identify
a relative? In this chapter we will show you a few more applications within
EMBOSS that can help you predict the function of your sequence.

5.1 Pattern matching

In a number of cases, the active site of a protein can be recognized by a
specific “fingerprint” or “template”, a fairly small set of residues that are
unique to a family of proteins. An example is the sequence GXGXXG (where
G=glycine and X=any amino acid) which defines a GTP binding site. Search-
ing for a (rather loose) predefined string of characters in a sequence is called
Pattern Matching.

The EMBOSS program patmatmotifs looks for sequence motifs by search-
ing with a pattern search algorithm through the given protein sequence for
the patterns defined in the PROSITE database, compiled by Dr. Amos
Bairoch at the University of Geneva. PROSITE is a database of protein
families and domains, based on the observation that, while there are a huge
number of different proteins, most of them can be grouped, on the basis of
similarities in their sequences, into a limited number of families. Proteins or
protein domains belonging to a particular family generally share functional
attributes and are derived from a common ancestor.

Exercise: patmatmotifs

unix % patmatmotifs

Search a motif database with a protein sequence

Input sequence: xlrhodop.pep

Output file [x1lrhodop_1.patmatmotifs]: xlrhodop.patmatmotifs

unix % more xlrhodop.patmatmotifs

Number of matches found in this Sequence = 1
Length of the sequence = 354 basepairs

Start of match = position 123 of sequence

End of match = position 139 of sequence
Length of motif = 17

33

patmatmotifs of G_PROTEIN_RECEPTOR with XLRHODOP+1 from 123 to 139\\
TLGGEVALWSLVVLAVERYMVVCKPMA
| |
123 139

Number of matches found in this Sequence = 1

Length of the sequence = 354 basepairs
Start of match = position 290 of sequence
End of match = position 306 of sequence
Length of motif = 17

patmatmotifs of OPSIN with XLRHODOP+1 from 290 to 306
PVFMTVPAFFAKSSAIYNPVIYIVLNK
I I
290 306

In our case we already know that our sequence is a rhodopsin. However,
if you had an unknown sequence, we hope you can see that identifying motifs
might provide you with information to help you plan further experiments.

Report formats

Many of the EMBOSS programs produce reports as output. These can take
various formats (and are user selectable). So if, instead of the somewhat
pictorial display of motifs seen in the previous exercise, one wanted a listfile
so that the individual sequence matches could be retrieved for some later
purpose, the report format can be specified using the -rformat qualifier.
[lustrating this with the previous example:

unix % patmatmotifs xlrhodop.pep -rformat listfile
Search a PROSITE motif database with a protein sequence
Output report [xlrhodop_1.patmatmotifs]:

unix % more Xlrhodop_l.patmatmotifs

ittt
Program: patmatmotifs
Rundate: Fri Feb 21 13:37:58 2003

34

Report_format: listfile
Report_file: xlrhodop_1.patmatmotifs
R

#

Sequence: sw-id:0PSD_XENLA from: 1 to: 354

HitCount: 2

#

Full: No

Prune: Yes

Data_file: /site/share/EMB0SS/data/PROSITE/prosite.lines
#

sw-id:0PSD_XENLA[123:139]
sw—-id:0PSD_XENLA [290:306]

You can now retrieve these sequences using e.g. seqret with xlrhodop_1.patmatmotifs
as a listfile.

There are other report formats (including feature table style formats).
The EMBOSS web page has up to date documentation on the formats that
are available.

5.2 Protein fingerprints

PRINTS is a database that defines functional protein families, identifying
each domain by a number of short, particularly well conserved sequences.
A full match to one of these ”fingerprints” will match all the relevant short
sequences in the correct order. A partial match is recorded if some are missing
or if they occur in an incorrect order. The PRINTS database can be searched
using the pscan program which is available within EMBOSS.

35

Exercise: pscan

unix % pscan

Scans proteins using PRINTS

Input sequence: xlrhodop.pep

Minimum number of elements per fingerprint [2]:
Maximum number of elements per fingerprint [20]:
Output file [x1lrhodop_1.pscan]: xlrhodop.pscan

Scanning XLRHODOP+1...

unix % more xlrhodop.pscan

CLASS 1
Fingerprints with all elements in order

Fingerprint GPCRRHODOPSN Elements 7
Accession number PR00237
Rhodopsin-like GPCR superfamily signature

Element 1 Threshold 54% Score 617
Start position 39 Length 25
Element 2 Threshold 49j Score 49%
Start position 72 Length 22
Element 3 Threshold 48), Score 55%
Start position 117 Length 23
Element 4 Threshold 50% Score 697
Start position 152 Length 22
Element 5 Threshold 51% Score 82%
Start position 204 Length 24
Element 6 Threshold 42} Score 72%
Start position 250 Length 25
Element 7 Threshold 46J Score 68%
Start position 288 Length 27

CLASS 2
All elements match but not all in the correct order

Fingerprint RHODOPSIN Elements 6
Accession number PRO0579

36

Rhodopsin signature
Element 1 Threshold 80% Score 100%
Start position 3 Length 19
Element 2 Threshold 76% Score 949
Start position 22 Length 17
Element 3 Threshold 53% Score 90%
Start position 85 Length 17
Element 4 Threshold 71% Score 100%
Start position 191 Length 17
Element 5 Threshold 56% Score 97Y%
Start position 271 Length 19
Element 6 Threshold 81% Score 95%
Start position 319 Length 14

CLASS 3
Not all elements match but those that do are in order

CLASS 4
Remaining partial matches

5.3 Multiple Sequence Analysis

The simultaneous alignment of many nucleotide or amino acid sequences is
now an essential tool in molecular biology. Multiple alignments are used to
find diagnostic patterns to characterize protein families; to detect or demon-
strate homology between new sequences and existing families of sequences;
to help predict the secondary and tertiary structures of the new sequences;
to suggest oligonucleotide primers for PCR; and as an essential prelude to
molecular evolutionary analysis.

One of the most popular programs for performing multiple sequence align-
ments is clustalw ([1]). EMBOSS has an interface to clustal called emma
clustal (and thus emma) creates a multiple sequence alignment from a group
of related sequences using progressive pairwise alignments. It can also pro-
duce a dendogram showing the clustering relationships used to create the
alignment. The dendogram shows the order of the pairwise alignments of se-

37

quences and clusters of sequences that together generate the final alignment,
but it is not an evolutionary tree, although the length of the branches is re-
lated to the relative distance of the sequences. clustal finds global optimal
alignments. The alignment procedure begins with the pairwise alignment of
the two most similar sequences, producing a cluster of two aligned sequences.
This cluster can then be aligned to the next most related sequence or cluster
of aligned sequences. Two clusters of sequences can be aligned by a simple
extension of the pairwise alignment of two individual sequences. The final
alignment is achieved by a series of progressive, pairwise alignments that in-
clude increasingly dissimilar sequences and clusters, until all sequences have
been included in the final pairwise alignment. When gaps are inserted into a
sequence to produce an alignment, they are inserted at the same position in
all the sequences of the cluster. Each pairwise alignment uses the method of
Needleman and Wunsch extended for use with clusters of aligned sequences.

pscan has told us that our sequence belongs to the rhodopsin family. This
is a very large family of sequences - for example, you can see the Pfam entry
for rhodopsin by doing a keyword search at
http://www.sanger.ac.uk/Software/Pfam

We will now retrieve some further members of the family from SwissProt
and produce a multiple alignment; we’ll then use this multiple alignment to
produce a profile of this group of sequences and use that to align them all to
our original sequence.

First, let’s retrieve the sequences using seqret:

Exercise: Retrieving a set of sequences

unix 7 seqret

Reads and writes (returns) a set of sequences all at once
Input sequence: sw:ops2_*

Output sequence [ops2 drome.fastal: ops2.fasta

Note our use of the wild card character * to retrieve all swissprot se-
quences whose identifiers begin ops2._.

Exercise: emma

unix % emma
Multiple alignment program - interface to ClustalW program

38

Input sequence: ops2.fasta

Output sequence [ops2_drome.aln]: ops2.aln

Output file [ops2.drome.dnd]: ops2.dnd

..clustalw -infile=21665A -outfile=21665B -align
-type=protein -output=gcg -pwmatrix=blosum -pwgapopen=10.000
-pwgapext=0.100 -newtree=21665C -matrix=blosum -gapopen=10.000
-gapext=5.000 -gapdist=8 -hgapresidues=GPSNDQEKR -maxdiv=30..

CLUSTAL W (1.74) Multiple Sequence Alignments

Sequence type explicitly set to Protein
Sequence format is Pearson

Sequence 1: O0PS2_DROME 381 aa
Sequence 2: 0PS2_DROPS 381 aa
Sequence 3: 0PS2_HEMSA 377 aa
Sequence 4: (0PS2_LIMPO 376 aa
Sequence 5: O0PS2_PATYE 399 aa
Sequence 6: 0PS2_SCHGR 380 aa

Start of Pairwise alignments
Aligning. ..

Sequences (1:2) Aligned. Score: 91
Sequences (1:3) Aligned. Score: 37
Sequences (1:4) Aligned. Score: 48
Sequences (1:5) Aligned. Score: 20
Sequences (1:6) Aligned. Score: 32
Sequences (2:3) Aligned. Score: 37
Sequences (2:4) Aligned. Score: 48
Sequences (2:5) Aligned. Score: 22
Sequences (2:6) Aligned. Score: 31
Sequences (3:4) Aligned. Score: 40
Sequences (3:5) Aligned. Score: 23
Sequences (3:6) Aligned. Score: 32
Sequences (4:5) Aligned. Score: 20
Sequences (4:6) Aligned. Score: 34
Sequences (5:6) Aligned. Score: 18
Guide tree file created: [21665C]

Start of Multiple Alignment
There are 5 groups

39

Aligning. ..

Group 1: Sequences: 2 Score:6084
Group 2: Sequences: 3 Score:3046
Group 3: Sequences: 4 Score:2772
Group 4: Sequences: 5 Score:2489
Group 5: Delayed

Sequence:5 Score:2819

Alignment Score 11778
GCG-Alignment file created [21665B]

We have aligned ops2 sequences from two fruit fly species, two crab
species, locust and scallop. Let’s see what emma made of them:
unix % more ops2.aln

>0PS2_DROME

MERSHLPETPFDLAHSGPRFQAQSSGNGSVLD-NVLPDMAHLVNPYWSRFAPMDPMMSKI
LGLFTLAIMIISCCGNGVVVYIFGGTKSLRTPANLLVLNLAFSDFCMMASQSPVMIINFY
Y-ETWVLGPLWCDIYAGCGSLFGCVSIWSMCMIAFDRYNVIVKGINGTPMTIKTSIMKIL
FIWMMAVFWTVMPLIGWSAYVPEGNLTACSIDYMTRMWNPRSYLITYSLFVYYTPLFLIC
YSYWFITAAVAAHEKAMREQAKKMNVKSLRSSEDCDK-SAEGKLAKVALTTISLWFMAWT
PYLVICYFGLFKIDG-LTPLTTIWGATFAKTSAVYNPIVYGISHPKYRIVLKEKCPMCVF
GNTDEPKPDAPASDTETTSEADSKA-------—————————————— - ————
>0PS2_DROPS

MERSLLPEPPLAMALLGPRFEAQTGGNRSVLD-NVLPDMAPLVNPHWSRFAPMDPTMSKI
LGLFTLVILIISCCGNGVVVYIFGGTKSLRTPANLLVLNLAFSDFCMMASQSPVMIINFY
Y-ETWVLGPLWCDIYAACGSLFGCVSIWSMCMIAFDRYNVIVKGINGTPMTIKTSIMKIA
FIWMMAVFWTIMPLIGWSSYVPEGNLTACSIDYMTRQOWNPRSYLITYSLFVYYTPLFMIC
YSYWFITATVAAHEKAMRDQAKKMNVKSLRSSEDCDK-SAENKLAKVALTTISLWFMAWT
PYLIICYFGLFKIDG-LTPLTTIWGATFAKTSAVYNPIVYGISHPNDRLVLKEKCPMCVC
GTTDEPKPDAPPSDTETTSEAESKD-———--—————————————————————————————
>0PS2_LIMPO

—————————— MANQLSYSSLGWPYQPNASVVD-TMPKEMLYMIHEHWYAFPPMNPLWYSI
LGVAMIILGIICVLGNGMVIYLMMTTKSLRTPTNLLVVNLAFSDFCMMAFMMPTMASNCF
A-ETWILGPFMCEVYGMAGSLFGCASIWSMVMITLDRYNVIVRGMAAAPLTHKKATLLLL
FVWIWSGGWTILPFFGWSRYVPEGNLTSCTVDYLTKDWSSASYVIIYGLAVYFLPLITMI
YCYFFIVHAVAEHEKQLREQAKKMNVASLRANADQQKQSAECRLAKVAMMTVGLWFMAWT

40

PYLITAWAGVFSSGTRLTPLATIWGSVFAKANSCYNPIVYGISHPRYKAALYQRFPSLAC
GSGESGSDVKSEASATMTMEEKPKSPEA---—-————————————————————————————
>0PS2_HEMSA

——-MTNATGPQMAYYGAASMDFGYPEGVSIVD-FVRPEIKPYVHQHWYNYPPVNPMWHYL
LGVIYLFLGTVSIFGNGLVIYLFNKSAALRTPANILVVNLALSDLIMLTTNVPFFTYNCF
SGGVWMFSPQYCEIYACLGAITGVCSIWLLCMISFDRYNIICNGFNGPKLTTGKAVVFAL
ISWVIAIGCALPPFFGWGNYILEGILDSCSYDYLTQDFNTFSYNIFIFVFDYFLPAAIIV
FSYVFIVKAIFAHEAAMRAQAKKMNVSTLRSNEADAQ-RAEIRIAKTALVNVSLWFICWT
PYALISLKGVMGDTSGITPLVSTLPALLAKSCSCYNPFVYAISHPKYRLAITQHLPWEFCV
HETETKSNDDSQSNSTVAQDKA--——-————————————————— - ————————
>0PS2_SCHGR

—————— MVNTTDFYPVPAAMAYESSVGLPLLGWNVPTEHLDLVHPHWRSFQVPNKYWHFG
LAFVYFMLMCMSSLGNGIVLWIYATTKSIRTPSNMFIVNLALFDVLMLLEMPMLVVSSLF
Y-QRPVGWELGCDIYAALGSVAGIGSAINNAATAFDRYRTISCPIDGRLTQGQVLALTIAG
TWVWTLPFTLMPLLRIWSRFTAEGFLTTCSFDYLTDDEDTKVFVGCIFAWSYAFPLCLIC
CFYYRLIGAVREHEKMLRDQAKKMNVKSLQSNADTEAQSAEIRIAKVALTIFFLFLCSWT
PYAVVAMIGAFGNRAALTPLSTMIPAVTAKIVSCIDPWVYAINHPRFRAEVQKRMKWLHL
GEDARSSKSDTSSTATDRTVGNVSASA-----———-———————————— o ————

——————————————————————————————————————— MPFPLNRTDTALVISPSEFRI
IGIFISICCIIGVLGNLLIIIVFAKRRSVRRPINFFVLNLAVSDLIVALLGYPMTAASAF
S-NRWIFDNIGCKIYAFLCFNSGVISIMTHAALSFCRYIIICQYGYRKKITQTTVLRTLF
SIWSFAMFWTLSPLFGWSSYVIEVVPVSCSVNWYGHGLGDVSYTISVIVAVYVFPLSIIV
FSYGMIL----—- QEKVCKDSRKNGIRAQQRYTPRFIQ-DIEQRVTFISFLMMAAFMVAWT
PYAIMSALAIGSFNV--ENSFAALPTLFAKASCAYNPFIYAFTNANFRDTVVEIMAPWTT
RRVGVSTLPWPQVTYYPRRRTSAVNTTDIEFPDDNIFIVNSSVNGPTVKREKIVQRNPIN
VRLGIKIEPRDSRAATENTFTADFSVI

The sequences are very similar, but there are some differences - note the
gaps that have been inserted. Also note that since this is a global alignment
algorithm, gaps have been inserted to make all the sequences the same length.

Differences in alignment can be very difficult to see in this format. The
program prettyplot can enhance visualisation of your results, by aligning

the sequences on top of one another.

41

Exercise: prettyplot

unix 7% prettyplot

Displays aligned sequences, with colouring and boxing
Input sequence set: ops2.aln

Graph type [x11]:

A graphic display will appear on your screen detailing your alignment.
Identical residues are shown in red, and similar residues in green. This type
of display can given you a first impression regions of conservation.

As with all EMBOSS graphical programs you can capture the output in
a file rather than just viewing it on screen. The output is controlled by the
-graph family of associated qualifiers (type prettyplot -help -verbose to
get a complete listing of options.

We will save our pretty plot to a file rhodopsin.ps in colour postscript
format. To do this we use -graph cps and -goutfile rhodopsin.

unix % prettyplot ops2.aln -goutfile rhodopsin -graph cps
Displays aligned sequences, with colouring and boxing
Created rhodopsin.ps

This has created a file rhodopsin.ps that can be printed on a postscript
printer or turned into a PDF document with ps2pdf (not an EMBOSS pro-
gram but commonly found on many UNIX/Linux systems). PDF documents
can then be viewed with a PDF viewer such as Acrobat Reader.

To adjust the output of prettyplot (e.g to increase the number of residues
per line) there are a number of options that can be set. Read the help file
and try to plot with/without a consensus, different numbers of residues per
line and so on. (hint: prettyplot -help)

5.4 Profiles

A very powerful technique for characterizing the putative structure and func-
tion of a sequence is the Profile Analysis ([2]). Profile analysis is a sequence
comparison method for finding and aligning distantly related sequences. The
comparison allows a new sequence to be aligned optimally to a family of simi-

42

lar sequences. The comparison uses a scoring matrix and an existing optimal
alignment of two or more similar protein sequences. The group or “family”
of similar sequences are first aligned together to create a multiple sequence
alignment. The information in the multiple sequence alignment is then rep-
resented as a table of position-specific symbol comparison values and gap
penalties. This table is called a profile. The similarity of new sequences
to an existing profile can be tested by comparing each new sequence to the
profile using a modification of the Smith/Waterman algorithm.

Exercise: prophecy

prophecy is an EMBOSS program for creating a profile from a set of multiply
aligned sequences. We’ll use our ops2 alignment to show you prophecy
unix % prophecy

Creates matrices/profiles from multiple alignments

Input sequence: ops2.aln

Profile type

F : Frequency

G : Gribskov

H : Henikoff

Select type [Fl: g

Enter a name for the profile [My matrix]: ops2 sequences
Scoring matrix [Epprofilel]:

Gap opening penalty [3.0]:

Gap extension penalty [0.3]:

Output file [outfile.prophecyl: ops2.prophecy

Exercise: prophet

Now let’s use the profile we just created to align zlrhodop.pep to our opsin2
sequences.

unix % prophet

Gapped alignment for profiles

Input sequence(s): xlrhodop.pep

Profile or matrix file: ops2.prophecy

Gap opening coefficient [1.0]:

Gap extension coefficient [0.1]:

43

Output file [ops2.prophet]:

unix % more ops2.prophet

Local: Consensus vs OPSD_XENLA
Score: 2189.00

Consensus 1 M.ERS.HLPEG.PFAAALSGARFAAQSSGN.ASVL..DWNVLP.E 38
I [IR [:] =20 |
OPSD_XENLLA 1 MNG.GTE..EGPN.NFYVP.PMS...SN.NKTGVVRSP.P..PFD 33

Consensus 39 MAPLVHPHWSRF.APMNPMWHKILGLFTLILGII.SCLG.NGLVI 80
T T R R R [+ |
OPSD_XENLA 34 YPQ.Q.QYYL.LAE. .EPWQYSALAAYMFLLILLGL.LPINFMTL 72

Consensus 81 YI.FA.GTKSLRTPANLLVLNLAFSD..FCMMASMSPV.MAINCF 120
IR N R T | e
OPSD_XENLA 73 FVTIQHKKL.LRTPLNYILLNLVFANHFM.MVLCGFTVTMYTSMH 115

Consensus 121 YGETWVLGPLGC..D.IYAAL.GSLFGCVSIWSMCMIAFDRYNVI 161
Sed I B | Y R A N I N
OPSD_XENLA 116 G.GYFIFGPTGCYIEGFFATLGG...GEVALWSLVVLAVERYIVV 156

Consensus 162 VKGINGTPLTIKTAILKALFIWMM.AVFW.TIMPLFGWSRYVPEG 204
R I N N N A R AR
OPSD_XENLA 157 CKPMANFRFGENHAIMGVAFTWIMAL .LSCAAPPLFGWSRYIPEG 200

Consensus 205 NLTSCSIDYLT.R.DWNPRSYL.ITYFLFV.YFFPLFIICYSY.W 244
A R R B R B A R |
OPSD_XENLA 201 MQCSCGVDYYTLKPEVNNESFVIY.YMFIVHFTIPLIVIFFCYGR 244

Consensus 245 FITAAVAAHEKAMRDQAKKMNVKSLRSNEDCDKQSAEI.R.LAKV 287
S I B [R S [: | :: |
OPSD_XENLA 245 LLCTVK..KEAAAQQQESLT..TTQKAEKE. .E...EVTRMVV.V 279

Consensus 288 ALTTISLWFMAWTPYAITAY.FGLFGIDGA.LTP.LTT.IWGALF 328

e SRR R Y E F R B
OPSD_XENLA 280 IMVVF.FFLICWVPYAYVAFYI.IFTHQGSNFGPVFMTVP.PAFF 321

44

Consensus 329 AKASSCYNPIVYAISHPKYRA.ALKEKCPMCVCGETD.EPSPDAP 371
N N D R | R
OPSD_XENLA 322 AKSSAIYNPVIYIVLNKQFRNCLI...ITTLCCGKNPFGDEDGSS 363

Consensus 372 (QSDATTTSEAAS..KAPAAI.EFPD 393
I T B
OPSD_XENLA 364 .SAATSKTEASSVSSSQ.QVSP.PA 385

The vertical bars (—) represent residues that are identical between the
ops2 consensus and our rhodopsin, while the colons (:) represent conservative
substitutions. We hope you can see that aligning members of a family can
reveal conserved regions that may be important for structure and/or function.

45

Chapter 6

Conclusion

We have shown you some of the programs available within EMBOSS, and
have introduced you to the way you can run these programs from the com-
mand line. We have not explored all the options available with these pro-
grams, and certainly have not completely covered all the applications cur-
rently available. We hope you have enjoyed learning about EMBOSS, and
that you now have a better idea of the types of problems it can help you to
solve.

We encourage you to visit the EMBOSS web pages at
http://www.uk.embnet.org/Software/EMBOSS/ where you will find infor-
mation on the various applications EMBOSS has to offer. There is also a
manual built in to EMBOSS known as tfm.

Exercise: tfm

We can use this program to see the manual entries for each program in
EMBOSS. Let’s look at the entry for the program wossname.
unix % tfm wossname

Displays a program’s help documentation manual

EMB0OSS: wossname

Program wossname

46

Function
Finds programs by keywords in their one-line documentation
Description
This allows a user to search for keywords or parts of words in the
brief documentation (as displayed by a program when it first starts).
The program name and the brief description is output. If no words to
search for are specified, then details of all the EMBOSS programs are
output.
The program has been written on the assumption that most people will
use it to quickly find the name of a program based on that program’s

description,so the output goes to the screen by default.

This program may find some use in automatically generating lists of
EMBOSS programs and their groups for Web pages.

Usage
Here are some sample sessions with wossname.

Search for programs with ’restrict’ in their description
% wossname restrict

Display a listing of programs in their groups
--More—-(8%)

The program displays the contents of the manual page by page, and you

can move onto the next page by using the space bar. This behaviour may be
turned off using the -nomore option.

47

Bibliography

1]

D.G. Higgins J.D. Thompson and T.J. Gibson. CLUSTAL W: improv-
ing the sensitivity of progressive multiple sequence alignment through

sequence weighting, position specific gap penalties and weight matrix
choice. . Nucleic Acids Research., 22:4673—-4680, 1994.

A.D. McClachlan M. Gribskov and D. Eisenberg. Profile analysis - detec-
tion of distantly related proteins. . Proc. Natl. Acad. Sci. USA, 84:4355—
4358, 1987.

S.B. Needlman and C.D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. . J.
Mol. Biol., 48:443-453, 1970.

T.F. Smith and M.S. Waterman. Identification of common molecular
subsequences. J. Mol. Biol., 147:195-197, 1981.

48

