
Grzegorz Murzynowski

The gmdoc Bundle *

Copyright © , , , ,
by Grzegorz ‘Natror’ Murzynowski
natror (at) gmail (dot) com
This program is subject to the LATEX Project Public License.
See http://www.ctan.org/tex--

archive/help/Catalogue/licenses.lppl.html for the details of that
license.

LPPL status: ”author-maintained”.
Many thanks to my TEX Guru Marcin Woliński for his TEXnical support.
For the documentation please refer to the file(s)
gmdoc.{gmd,pdf}.

 〈⋆master〉

(A handful of meta-settings skipped)

 〈/master〉
 〈⋆ins〉

 \def\supposedJobname{%\supposedJobname
 gmdoc%
 }

 \let\xA\expandafter
 \let\nX\noexpand
 \long\def\firstofone#{#}

 \unless\ifnum\strcmp␣{\jobname}␣{\supposedJobname}␣=

If we want to generate files from this file, we should call

xelatex␣--jobname=〈sth. else〉

Then the \strcmp primitive expands to some nonzero value and the conditional
turns true.

 \NeedsTeXFormat{LaTeXe}[//]

 \def\gmBundleName{%\gmBundleName
 gmdoc%
 }

 \def\currentBundle{%\currentBundle
 docbundle%
 }

 \edef\batchfile{\gmBundleName␣.gmd}

 \input␣docstrip.tex

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html
http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

 \def\NOO{\FromDir\gmBundleFile␣.gmd}\NOO
Note it’s \def so the BundleName expands to its current value.

 \let\skiplines\relax
 \let\endskiplines\relax
 \askforoverwritefalse
 \def\MetaPrefixS{\MetaPrefix\space}\MetaPrefixS
 \def\perCentS{\perCent\space}\perCentS
 \begingroup
 \endlinechar=\newlinechar
 \catcode\newlinechar=\relax%
 \catcode`\^=\relax%
 \catcode`\�=\relax␣% Tifinagh Letter Yay
 \catcode`\\=�relax␣%
 �catcode`�⁄=�relax␣%
 �firstofone{�endgroup␣%
 �def�preamBeginningLeaf{%
 �RCSInfo
 �MetaPrefixS␣This␣is␣file␣“�outFileName”␣generated␣with␣

the␣DocStrip␣utility.
 �MetaPrefixS
 �ReferenceLines␣%
 �MetaPrefix␣%
 }% of \preamBeginningLeaf
 �def�copyRightLeaf{Copyright␣©␣}%
 �def�licenseNoteLeaf{%
 This␣program␣is␣subject␣to␣the␣LaTeX␣Project␣Public␣

License.
 �MetaPrefixS␣See␣␣

http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html
 �MetaPrefixS␣for␣the␣details␣of␣that␣license.
 �MetaPrefix
 �MetaPrefixS␣LPPL␣status:␣"author-maintained".
 �MetaPrefix␣%
 }% of \licenseNoteLeaf
 �def�preamEndingLeaf{%
 �gmBundleFile.{gmd,pdf}�gobble{␣or␣\file{%

Natror-OperaOmnia.{gmd,pdf}}}.
 �MetaPrefixS␣␣%
 }% of \preamEndingLeaf
 �def�providesStatement{%
 \NeedsTeXFormat{LaTeXe}
 \Provides�gmFileKind{�gmOutName}
 �space�space�space�space[�gmFileDate�space␣

�gmFileVersion�space␣�gmFileInfo�space␣(GM)]
 }%
 }% of \firstofone of changed catcodes.
 \def\beforeDot#.#\empty{#}\beforeDot

* This file has version number v. dated //.

 \def\firstoftwo##{#}\firstoftwo
 \def\secondoftwo##{#}\secondoftwo

To gobble the default heading lines put by DocStrip:

 \Name\def{ds@heading}#{}

 \def\csnameIf#{%\csnameIf
 \ifcsname#\endcsname
 \csname#\xA\endcsname
 \fi
 }

 \def\writeto#{\edef\destdir{#}}\writeto
 \def\FromDir{}\FromDir
 \def\writefrom#{\def\FromDir{#/}}\writefrom

\FromDir
 \def\WritePreamble#{%\WritePreamble
 \xA\ifx\csname␣pre@\@stripstring#\endcsname\empty
 \else
 \edef\outFileName{\@stripstring#}%
 \edef\gmOutName{%
 \xA\beforeDot\outFileName\empty
 }% of \gmOutName

 \edef\gmOutTitle{%
 \xA\xA\xA\detokenize\xA\xA\xA{%
 \csname␣\gmOutName␣Title\endcsname}%
 }% of \gmOutTitle

 \edef\gmOutYears{%
 \csnameIf␣{\gmOutName␣Years}%
 }%
 \edef\gmOutThanks{%
 \ifcsname␣\gmOutName␣Thanks\endcsname
 \xA\xA\xA\detokenize\xA\xA\xA{%
 \csname␣\gmOutName␣Thanks\endcsname
 }%
 \fi
 }%
 \edefInfo{Date}% \gmFileDate
 \edefInfo{Version}% \gmFileVersion
 \edefInfo{Info}% \gmFileInfo

 \StreamPut#{\csname␣pre@\@stripstring#\endcsname}%
 \fi}

First we look for the info at the leaf-level, then at standalone level, then at the bundle
level. If we don’t find it, it’ll be empty.

 \def\edefInfo#{%\edefInfo
 \Name\edef{gmFile#}{%
 \ifcsname␣\gmOutName␣Leaf#\endcsname␣% e.g.gmbaseLeafVersion
 \xA\xA\xA\detokenize\xA\xA\xA{%
 \csname␣\gmOutName␣Leaf#\endcsname
 }%
 \else
 \ifcsname␣\gmOutName␣#\endcsname␣% e.g. gmbaseVersion

 \xA\xA\xA\detokenize\xA\xA\xA{%
 \csname␣\gmOutName␣#\endcsname
 }%
 \else
 \ifcsname␣\gmBundleFile␣#\endcsname␣% e.g.gmutilsVersion
 \xA\xA\xA\detokenize\xA\xA\xA{%
 \csname␣\gmBundleFile␣#\endcsname
 }%
 \fi
 \fi
 \fi
 }% of edefined macro
 }% of \edefInfo

 \let\gmOutName\relax
 \let\gmOutTitle\relax
 \let\gmOutYears\relax
 \let\gmFileDate\relax
 \let\gmFileVersion\relax
 \let\gmFileInfo\relax
 \let\gmOutThanks\relax
 \let\gmBundleFile\relax
 \let\gmFileKind\relax

 \declarepreamble\gmdLeaf
 \preamBeginningLeaf

 \copyRightLeaf␣\gmOutYears
 by␣Grzegorz␣‘Natror’␣Murzynowski
 natror␣(at)␣gmail␣(dot)␣com

 \licenseNoteLeaf

 For␣the␣documentation␣please␣refer␣to␣the␣file(s)
 \preamEndingLeaf
 \providesStatement
 \endpreamble

 \keepsilent

We declare all the preambles later and use the \empty Docstrip preamble.

 \errorcontextlines=

 \@makeother\^^A
 \@makeother\^^B
 \@makeother\^^C
 \@makeother\^^V

 \def\gmfile\gmfile
 #% file name
 #% DocStrip directive(s)
 #% file extension
 {%
 \file{gm#.#}{\from{\gmBundleFile/\NOO}{#}}%
 }

 \def\pack#{\gmfile{#}{#}{sty}}\pack

 \begingroup\catcode`\␣=
 \catcode`\^^I=\relax
 \catcode`\^^M=\relax
 \firstofone{\endgroup

 \def\gmBundleFile{gmdoc}\gmBundleFile

 \generate{

 \usepreamble\gmdLeaf

 \def\gmFileKind{␣␣␣␣Package␣␣␣␣}\gmFileKind

 \writeto{␣␣␣␣gmdoc␣␣␣␣}
 \pack{␣␣␣␣doc␣␣␣␣}

 \def\gmFileKind{␣␣␣␣Class␣␣␣␣}\gmFileKind
 \gmfile{␣␣␣␣docc␣␣␣␣}{␣␣␣␣docc␣␣␣␣}{␣␣␣␣cls␣␣␣␣}

 \writefrom{␣␣␣␣gmdoc␣␣␣␣}
 \writeto{␣␣␣␣␣␣␣␣gmdoc/Sourcee␣␣␣␣}
 \usepreamble\gmdStandalone

 \file{␣␣␣␣␣␣␣␣Sourcee_gmdoc.tex␣␣␣␣}{\from{\NOO}{␣␣␣␣
LaTeXsource␣␣␣␣}}

 \writeto{␣␣␣␣gmdoc/doc␣␣␣␣}
 \file{␣␣␣␣␣␣␣␣doc_gmdoc.tex␣␣␣␣}{\from{\NOO}{␣␣␣␣

docbygmdoc␣␣␣␣}}

 \writeto{␣␣␣␣gmdoc/docstrip␣␣␣␣}
 \file{␣␣␣␣␣␣␣␣docstrip_gmdoc.tex␣␣␣␣}{\from{\NOO}{␣␣␣␣

docstrip␣␣␣␣}}

 }
 }% of changed catcodes’ \firstofone

 \Msg{%
⋆⋆}

 \Msg{␣}
 \Msg{␣␣To␣finish␣the␣installation␣you␣have␣to␣move}
 \Msg{␣␣␣the␣generated␣files␣into␣a␣directory␣searched␣by␣TeX.}
 \Msg{␣}
 \Msg{␣␣To␣type-set␣the␣documentation,␣run␣the␣file␣‘\NOO’}
 \Msg{␣␣twice␣through␣LaTeX␣and␣maybe␣MakeIndex␣it.␣␣}
 \Msg{␣}
 \Msg{%

⋆⋆⋆}

 \csname␣fi\endcsname␣% probably for the directive’s clause
 \csname␣endinput\expandafter\endcsname␣%
 \fi␣% of unless job name other than name of this file, which indicates the DocStrip

pass.

 〈/ ins〉

Contents

Readme
Installation
Contents of the gmdoc.zip archive . . .
Compiling of the documentation . . .
Bonus: base drivers

Introduction
The user interface

Used terms
Preparing of the source file
The main input commands
Package options
The packages required
Automatic marking of definitions . . .
Manual marking of the macros and

environments
Index ex/inclusions
The DocStrip directives
The changes history
The parameters
The narration macros
A queerness of \label
doc-compatibility

The driver part
The code

The package options
The dependencies and preliminaries .
The core
Numbering (or not) of the lines
Spacing with \everypar
Life among queer EOLs
Adjustments of verbatim and \verb
Macros for marking of the macros . .

Automatic detection of definitions . .
\DeclareDefining and the

detectors
Default defining commands
Suspending (‘hiding’) and

resuming detection
Indexing of CSes
Index exclude list
Index parameters
The DocStrip directives
The changes history
The checksum
Macros from ltxdoc
\DocInclude and the ltxdoc-like

setup
Redefinition of \maketitle
The file’s date and version information
Miscellanea
doc-compatibility
gmdocing doc.dtx

\OCRInclude
Polishing, development and bugs . . .
[No] 〈eof〉
Intro .
Usage .
The Code
The gmoldcomm package
Some Typesetting Remarks
The Body
Index .
Change History

 〈⋆doc〉

Readme

This package is a tool for documenting of (LA)TEX packages, classes etc., i.e., the .sty, .cls
files etc. The author just writes the code and adds the commentary precededwith % sign
(or another properly declared). No special environments are necessary.

The package tends to be (optionally) compatible with the standard doc.sty package,
i.e., the .dtx files are also compilable with gmdoc (they may need a tiny adjustment in
some special cases).

The tools are integrated with hyperref’s advantages such as hyperlinking of index
entries, contents entries and cross-references.

The package also works with X ETEX (switches automatically).

Installation

Unpack the \jobname-tds.zip archive (this is an archive that conforms the TDS standard,
see CTAN/tds/tds.pdf) in some texmf directory or just put the gmutils.sty somewhere in
the texmf/\:tex/\:latex branch. Creating a texmf/\:tex/\:latex/\:gm directory may be
advisable if you consider using other packages written by me.

Then you should refresh your TEX distribution’s files’ database most probably.

Contents of the gmdoc.zip archive

The distribution of the gmutils package consists of the following three files and a TDS-
compliant archive.

gmdoc.gmd
README
gmdoc.pdf
gmdoc.tds.zip

Compiling of the documentation

The last of the above files (the .pdf, i.e., this file) is a documentation compiled from the
.gmd file by running LATEX on the gmdoc.gmd file twice (xelatex␣gmdoc.gmd in the
directory you wish the documentation to be in), then MakeIndex on the \jobname.idx
file, and then LATEX on \jobname.\gmdExt once more.

MakeIndex shell commands:

makeindex -r gmdoc
makeindex -r -s gmglo.ist -o gmdoc.gls gmdoc.glo

The -r switch is to forbid MakeIndex to make implicit ranges since the (code line)
numbers will be hyperlinks.

Compiling the documentation requires the packages: gmdoc (gmdoc.sty and gm-
docc.cls), gmverb.sty, the gmutils bundle, gmiflink.sty and also some standard packages:
hyperref.sty, color.sty, geometry.sty, multicol.sty, lmodern.sty, fontenc.sty that should be in-
stalled on your computer by default.

Moreover, you should put the gmglo.ist file, a MakeIndex style for the changes’ his-
tory, into some texmf/makeindex (sub)directory.

Then you should refresh your TEX distribution’s files’ database most probably.
If you had not installed themwcls classes (available on CTAN and present in TEX Live

e.g.), the result of your compilation might differ a bit from the .pdf provided in this .zip
archive in formatting: If you had not installedmwcls, the standard article.cls class would
be used.

Bonus: base drivers

As a bonus and example of doc-compatibility there are driver files included (cf. Palest-
rina, Missa papae Marcelli ;-):

source2e_gmdoc.tex
docstrip_gmdoc.tex
doc_gmdoc.tex

gmoldcomm.sty
(gmsource2e.ist is generated from source2e_gmdoc.tex)

These drivers typeset the respective files from the

…/texmf-dist/source/latex/base

directory of the TEXLive distribution (they only read that directory).
Probably you should redefine the \BasePath macro in them so that it points that

directory on your computer.

Introduction

There are very sophisticated and effective tools for documenting LATEX macro packages,
namely the doc package and the ltxdoc class. Why did I write another documenting
package then?

I like comfort and doc is not comfortable enough for me. It requires special marking
of the macro code to be properly typeset when documented. I want TEX to know ‘itself’
where the code begins and ends, without additional marks.

That’s the difference. One more difference, more important for the people for whom
the doc’s conventions are acceptable, is that gmdocmakes use of hyperref advantages and
makes a hyperlinking index and toc entries and the cross-references, too. (The CSes in
the code maybe in the future.)

The rest is striving to level the very high doc/ltxdoc’s standard, such as (optional)
numbering of the codelines and automatic indexing the control sequences e.g.

The doc package was and still is a great inspiration for me and I would like this hum-
ble package to be considered as a sort of homage to it. If I mention copying some code or
narrative but do not state the source explicitly, I mean the doc package’s documentation
(I have v.b dated //).

The user interface

Used terms

When I write of a macro, I mean a macro in The TEX book’s meaning, i.e., a control se-
quence whose meaning is \[e|g|x]defined. By a macro’s parameter I mean each of
#〈digit〉s in its definition. When I write about a macro’s argument, I mean the value
(list of tokens) substituting the corresponding parameter of this macro. (These under-
standings are according to The TEX book, I hope: TEX is a religion of Book ;-) .)

I’ll use a shorthand for ‘control sequence’, CS.
When I talk of a declaration, I mean a macro that expands to a certain assignment,

such as \itshape or \@onlypreamble{〈CS〉}.
Talking of declarations, I’ll use the OCSR acronym as a shorthand for ’observes/ing

common TEX scoping rules’.
By a command I mean a certain abstract visible to the end user as a CS but consisting

possibly of more than one macro. I’ll talk of a command’s argument also in the ‘sense -
for -the -end -user’, e.g., I’ll talk of the \verb command’s argument although the macro
\verb has no #〈digit〉 in its definition.

The code to be typeset verbatim (and with all the bells and whistles) is everything
that’s not commented out in the source file and what is not a leading space(s).

The commentary or narrative is everything after the comment char till the end of
a line. The comment char is a character the \catcode of which is usually i.e., when
the file works; if you don’t play with the \catcodes, it’s just the %. When the file is
documented with gmdoc, such a char is re\catcoded and its rôle is else: it becomes the
code delimiter.

A line containing any TEX code (not commented out) will be called a codeline. A line
that begins with (some leading spaces and) a code delimiter will be called a comment
line or narration line.

 As Grieg’s Piano Concerto is a homage to the Schumann’s.

The user of this package will also be addressed as you.

Not to favour any particular gender (of the amazingly rich variety, I mean, not of the
vulgarly simplified two-element set), in this documentation I use alternating pronouns
of third person (\heshe etc. commands provided by gmutils), so let one be not surprised\heshe
if ‘they’ sees ‘themself’ altered in the same sentence :-) .

Preparing of the source file

When (LA)TEX with gmdoc.sty package loaded typesets the comment lines, the code de-
limiter is omitted. If the comment continues a codeline, the code delimiter is printed.
It’s done so because ending a TEX code line with a % is just a concatenation with the next
line sometimes. Comments longer than one line are typeset continuously with the code
delimiters omitted.

The user should just write their splendid code and brilliant commentary. In the lat-
ter they may use usual (LA)TEX commands. The only requirement is, if an argument is
divided in two lines, to end such a dividing line with \^^M (\〈line end〉) or with ^^B\^^M

^^B sequence that’ll enter the (active) 〈char〉 which shall gobble the line end.
But there is also a gmdoc version of \footnote provided that sets the catcodes so

that you don’t bother about ^^B in the argument, \qfootnotethat takes the same ar-\qfootnote
gument(s) as the standard \footnote and for emphasis there is \qemph{〈text to em-\qemph
phasise〉}. Both of them work also in the ‘straight’ EOLs’ scope so you don’t bother. The
\arg gmutils’ command also works without ^^B.\arg

Moreover, if they wants to add a meta-comment i.e., a text that doesn’t appear in the
code layer nor in the narrative, they may use the ^^A sequence that’ll be read by TEX as^^A
〈char〉, which in gmdoc is active and defined to gobble the stuff between itself and the
line end.

Note that ^^A behaves much like comment char although it’s active in fact: it
re\catcodes the special characters including \, { and } so you don’t have to worry
about unbalanced braces or \ifs in its scope. But ^^B doesn’t re\catcode anything
(which would be useless in an argument) so any text between ^^B and line end has to
be balanced.

However, it may be a bit confusing for someone acquaintedwith the doc conventions.
If you don’t fancy the ^^B special sequence, instead youmay restore the standardmean-
ing of the line end with the \StraightEOL declaration which OCSR. As almost all the\StraightEOL
control sequences, it may be used also as an environment, i.e., \begin{StraightEOL}
… \end{StraightEOL}. However, if for any reason you don’t want to make an envi-
ronment (a group), there’s a \StraightEOL’s counterpart, the \QueerEOL declaration\QueerEOL
that restores again the queer gmdoc’s meaning of the line end. It OCSR, too. One more
point to use \StraightEOL is where you wish some code lines to be executed both
while loading the file and during the documentation pass (it’s analogous to doc’s not
embracing some code lines in a macrocode environment).

As in standard TEXing, one gets a paragraph by a blank line. Such a line should be
%ed of course. A fully blank line is considered a blank code line and hence results in
a vertical space in the documentation. As in the environments for poetry known to me,
subsequent blank lines do not increase such a space.

Then they should prepare a main document file, a driver henceforth, to set all the
required formattings such as \documentclass, paper size etc., and load this pack-

 In my understanding ‘queer’ and ‘straight’ are not the opposites excluding each other but the coun-
terparts that may cooperate in harmony for people’s good. And, as I try to show with the \QueerEOL and
\StraightEOL declarations, ‘queer’ may be very useful and recommended while ‘straight’ is the standard
but not necessarily normative.

age with a standard command i.e., \usepackage{gmdoc}, just as doc’s documentation
says:

“If one is going to document a set of macros with the [gm]doc package one has to
prepare a special driver file which produces the formatted document. This driver file
has the following characteristics:

\documentclass[〈options〉]{〈document class〉}
\usepackage[〈options, probably none〉]{gmdoc}

〈preamble〉
\begin{document}

〈special input commands〉
\end{document}

”

The main input commands

To typeset a source file you may use the \DocInput macro that takes the (path and)\DocInput
name of the file with the extension as the only argument, e.g., \DocInput{mybril¦
liantpackage.sty}.

(Note that an installed package or class file is findable to TEX even if you don’t specify
the path.)

If a source file iswrittenwith rather doc than gmdoc inmind, then the \OldDocInput\OldDocInput
command may be more appropriate (e.g., if you break the arguments of commands in
the commentary in lines). It also takes the file (path and) name as the argument.

When using \OldDocInput, you have to wrap all the code in macrocode environ-macrocode
ments, which is not necessary when you use \DocInput. Moreover, with \OldDocIn¦
put the macrocode[⋆] environments require to be ended with

%␣␣␣␣\end{macrocode[⋆]}

as in doc. (With \DocInput you are not obliged to precede \end{macrocode[⋆]} with
The Four Spaces.)

If you wish to document many files in one document, you are provided \DocIn¦\DocInclude
clude command, analogous to LATEX’s \include and very likely to ltxdoc’s command
of the same name. In gmdoc it has one mandatory argument that should be the file name
without extension, just like for \include.

The file extensions supported by \DocInclude are .fdd, .dtx, .cls, .sty, .tex and .fd.
The macro looks for one of those extensions in the order just given. If you need to doc-
ument files of other extensions, please let me know and most probably we’ll make it
possible.

\DocInclude has also an optional first argument that is intended to be the path of
the included file with the levels separated by / (slash) and also ended with a slash. The
path given to \DocInclude as the first and optional argument will not appear in the
headings nor in the footers.

\DocInclude redefines \maketitle so that it makes a chapter heading or, in the\maketitle
classes that don’t support \chapter, a part heading, in both cases with respective toc
entries. The default assumption is that all the files have the same author(s) so there’s no
need to print them in the file heading. If you wish the authors names to be printed, you
should write \PrintFilesAuthors in the preamble or before the relevant \DocIn¦\PrintFilesAuthors
cludes. If you wish to undeclare printing the authors names, there is \SkipFiles¦\SkipFilesAuthors
Authors declaration.

 I use the ‘broken bar’ character as a hyphen in verbatim texts and hyperlinks. If you dont’t like it, see
\verbDiscretionaryHyphen in gmverb.

Like in ltxdoc, the name of an included file appears in the footer of each page with
date and version info (if they are provided).

The \DocIncluded files are numbered with the letters, the lowercase first, as in
ltxdoc. Such a file-marker also precedes the index entries, if the (default) codeline index
option is in force.

As with \include, you may declare \includeonly{〈filenames separated with com-\includeonly
mas〉} for the draft versions.

If you want to put the driver into the same .sty or .cls file (see chapter to see
how), you may write \DocInput{\jobname.sty}, or \DocInclude{\jobname},
but there’s also a shorthand for the latter \SelfInclude that takes no arguments. By\SelfInclude
the way, to avoid an infinite recursive input of .aux files in the case of self-inclusion an
.auxx file is used instead of (main) .aux.

By the way, to say TEX to (self)include only the current file, most probably you
should say \includeonly{\jobname} not \includeonly{myfile} because of the
catcodes.

At the default settings, the\(Doc|Self)Includedfiles constitute chapters if\chap¦
ter is known and parts otherwise. The \maketitles of those files result in the respec-
tive headings.

If you prefer more ltxdocish look, in which the files always constitute the parts and
those parts have a part’s title pages with the file name and the files’ \maketitles result
in (article-like) titles not division headings, then you are provided the \ltxLookSetup\ltxLookSetup
declaration (allowed only in the preamble). However, even after this declaration the
files will be included according to gmdoc’s rules not necessarily to the doc’s ones (i.e.,
with minimal marking necessary at the price of active line ends (therefore not allowed
between a command and its argument nor inside an argument)).

On the other hand, if you like the look offered by me but you have the files prepared
for doc not for gmdoc, then you should declare \olddocIncludes. Unlike the previous\olddocIncludes
one, this may be used anywhere, because I have the account of including both doc-like
and gmdoc-like files into one document. This declaration just changes the internal input
command and doesn’t change the sectioning settings.

It seems possible that youwish to document the ‘old-doc’ files first and the ‘new-doc’
ones after, so the above declaration has its counterpart, \gmdocIncludes, that may be\gmdocIncludes
used anywhere, too. Before the respective \DocInclude(s), of course.

Both these declarations OCSR.
If you wish to document your files as with ltxdoc and as with doc, you should declare

\ltxLookSetup in the preamble and \olddocIncludes.

Talking of analogies with ltxdoc, if you like only the page layout provided by that
class, there is the \ltxPageLayout declaration (allowed only in preamble) that only\ltxPageLayout
changes the margins and the text width (it’s intended to be used with the default paper
size). This declaration is contained in the \ltxLookSetup declaration.

If you need to add something at the beginning of the input of file, there’s the \AtBe¦\AtBegInput
gInput declaration that takes one mandatory argument which is the stuff to be added.
This declaration is global. It may be usedmore than one time and the arguments of each
occurrence of it add up and are put at the beginning of input of every subsequent files.

Simili modo, for the end of input, there’s the \AtEndInput declaration, also one-\AtEndInput
argument, global and cumulative.

If you need to add something at the beginning of input of only one file, put before
the respective input command an \AtBegInputOnce{〈the stuff to be added〉} declara-\AtBegInputOnce
tion. It’s also global which means that the groups do not limit its scope but it adds its
argument only at the first input succeeding it (the argument gets wrapped in a macro
that’s \relaxed at the first use). \AtBegInputOnces add up, too.

Onemore input command is \IndexInput (the name and idea of effect comes from\IndexInput
doc). It takes the same argument as \DocInput, the file’s (path and) name with exten-
sion. (It has\DocInput inside). Itworks properly if the input file doesn’t contain explicit
〈char〉 (^^A is OK).

The effect of this command is typesetting of all the input file verbatim, with the code
lines numbered and the CSes automatically indexed (gmdoc.sty options are in force).

Package options

As many good packages, this also provides some options:

Due to best TEX documenting traditions the codelines will be numbered. But if the
user doesn’t wish that, they may turn it off with the linesnotnum option.linesnotnum

However, if they agrees to have the lines numbered, they may wish to reset the
counter of lines themself, e.g., when they documents many source files in one docu-
ment. Then they may wish the line numbers to be reset with every {section}’s turn
for instance. This is the rôle of the uresetlinecount option, which seems to be a bituresetlinecount
obsolete however, since the \DocInclude command takes care of a proper reset.

Talking of line numbering further, a tradition seems to exist to number only the code-
lines and not to number the lines of commentary. That’s the default behaviour of gmdoc
but, if someone wants the comment lines to be numbered too, which may be conve-
nient for reference purposes, they is provided the countalllines option. This optioncountalllines
switches things to use the \inputlineno primitive for codeline numbers so you get
the numbers of the source file instead of number only of the codelines. Note however,
that there are no hypertargets made to the narration lines and the value of \ref is the
number of the most recent codeline.

Moreover, if theywants to get the narration lines’ number printed, there is the starred
version of that option, countalllines⋆. I imagine someone may use it for debug.countalllines⋆
This option is not finished in details, it causes errors with \addvspace because it puts
a hyperlabel at every line. When it is in force, all the index entries are referenced with
the line numbers and the narration acquires a bit biblical look ;-), as shown in this
short example. This option is intended for the draft versions and it is not perfect (as if
anything in this package was). As you see, the lines are typeset continuously with
the numbers printed.

By default the makeidx package is loaded and initialised and the CSes occurring in
the code are automatically (hyper)indexed thanks to the hyperref package. If the user
doesn’t wish to index anything, she should use the noindex option.noindex

The index comes two possible ways: with the line numbers (if the lines are num-
bered) and that’s the default, or with the page numbers, if the pageindex option ispageindex
set.

The references in the change history are of the same: when index is line number, then
the changes history too.

By default, gmdoc excludes some CSes from being indexed. They are the most
common CSes, LATEX internal macros and TEX primitives. To learn what CSes are ex-
cluded actually, see lines –.

If youdon’twant all those exclusions, youmay turn themoffwith theindexallmacrosindexallmacros
option.

If you have ambiguous feelings about whether to let the default exclusions or forbid
them, see p. to feed this ambiguity with a couple of declarations.

In doc package there’s a default behaviour of putting marked macro’s or environ-
ment’s name to a marginpar. In the standard classes it’s alright but not all the classes
support marginpars. That is the reason why this package enables marginpar-ing when

in standard classes, enables or disables it due to the respective option when with
Marcin Woliński’s classes and in any case provides the options withmarginpar andwithmarginpar
nomarginpar. So, in non-standard classes the default behaviour is to disable margin-nomarginpar
pars. If the marginpars are enabled in gmdoc, it will put marked control sequences and
environments into marginpars (see \TextUsage etc.). These options do not affect com-
mon using marginpars, which depends on the document class.

My suggestion is to make the spaces in the code visible except the leading ones and
that’s the default. But if you wish all the code spaces to be blank, I give the option
codespacesblank reluctantly. Moreover, if you wish the code spaces to be blank onlycodespacesblank
in some areas, then there’s \CodeSpacesBlank declaration (OCSR).\CodeSpacesBlank

Another space formatting option is codespacesgrey suggested by Will Robertson.codespacesgrey
It makes the spaces of code visible only not black but grey. The name of their colour
is visspacesgrey and by default it’s defined as {gray}{.}, you can change it with
xcolor’s \definecolor. There is also an OCSR declaration \CodeSpacesGrey.\CodeSpacesGrey

If for any reason you wish the code spaces blank in general and visible and grey
in verbatim⋆s, use the declaration \VisSpacesGrey of the gmverb package. If you\VisSpacesGrey
like little tricks, you can also specify codespacesgrey,␣codespacesblank in gmdoc
options (in this order).

The packages required

gmdoc requires (loads if they’re not loaded yet) some other packages of mine, namely
gmutils, gmverb, analogous to Frank Mittelbach’s shortvrb, and gmiflink for conditional
making of hyperlinks. It also requires hyperref, multicol, color and makeidx.

The gmverb package redefines the \verb command and the verbatim environmentgmverb
in such a way that ␣, { and \ are breakable, the first with no ‘hyphen’ and the other two
with the comment char as a hyphen, i.e., {〈subsequent text〉} breaks into {%
〈subsequent text〉} and 〈text〉\mylittlemacro breaks into 〈text〉%
\mylittlemacro.

This package provides the \verbatimspecials declaration that is used in gm-\verbatimspecials
docc.cls as

\verbatimspecials⁄«»[¿]
to set ⁄ (fractional slash) to the escape char, « and » to group begin and end respectively
and ¿ tomath shift in verbatims (also the short ones). Note however that this declaration
has no effect on the code layer.

As the standard LATEX one, my \verb issues an error when a line end occurs in its
scope. But, if you’d like to allow line ends in short verbatims, there’s the \verbeolOK\verbeolOK
declaration. The plain \verb typesets spaces blank and \verb⋆ makes them visible, as
in the standard version(s).

Moreover, gmverb provides the \MakeShortVerb declaration that takes a one-char\MakeShortVerb
control sequence as the only argument and turns the char used into a short verbatim
delimiter, e.g., after

\MakeShortVerb⋆\|
(as you see, the declaration has the starred version, which is for visible spaces, and non-
starred for blank spaces) to get \mylittlemacro you may type |\mylittlemacro|
instead of \verb+\mylittlemacro+. Because the char used in the last example is my
favourite and is used this way by DEK in The TEX book’s format, gmverb provides a macro
\dekclubs that expands to the example displayed above.\dekclubs

Be careful because such active chars may interfere with other things, e.g., the | with
the vertical line marker in tabulars and with the tikz package. If this happens, you can
declare e.g., \DeleteShortVerb\| and the previous meaning of the char used shall\DeleteShortVerb
be restored.

One more difference between gmverb and shortvrb is that the chars \activeated by
\MakeShortVerb, behave as if they were ‘other’ in math mode, so you may type e.g.,
k|n to get k|n etc.

The gmutils package provides a couple of macros similar to some basic (LA)TEX ones,gmutils
rather strictly technical and (I hope) tricky, such as \afterfi, \ifnextcat, \ad¦
dtomacro etc. It’s this package that provides the macros for formatting of names of
macros and files, such as \cs, \marg, \pk etc. Moreover, it provides a powerful tool for
defining commandswithweird optional andKnuthian arguments, \DeclareCommand,
inspired by ancient (pre-expl) xparse’s \DeclareDocumentCommand.

The gmdocpackage uses a lot of hyperlinking possibilities provided by hyperrefwhichhyperref
is therefore probably themost important package required. The recommended situation
is that the user loads hyperref package with their favourite options before loading gmdoc.

If they does not, gmdoc shall load it with my favourite options.
To avoid an error if a (hyper)referenced label does not exist, gmdoc uses the gmiflinkgmiflink

package. It works e.g., in the indexwhen the codeline numbers have been changed: then
they are still typeset, only not as hyperlinks but as a common text.

To typeset the index and the change history in balanced columns gmdoc uses the
multicol package that seems to be standard these days.multicol

Also the multicol package, required to define the default colour of the hyperlinks,color
seems to be standard already, and makeidx.

Automatic marking of definitions

gmdoc implements automatic detection of a couple of definitions. By default it detects
all occurrences of the following commands in the code:
. \def, \newcount, \newdimen, \newskip, \newif, \newtoks, \newbox,

\newread,
\newwrite, \newlength, \newcommand[⋆], \renewcommand[⋆],
\providecommand[⋆], \DeclareRobustCommand[⋆],
\DeclareTextCommand[⋆],
\DeclareTextCommandDefault[⋆], \DeclareDocumentCommand,
\DeclareCommand

. \newenvironment[⋆], \renewenvironment[⋆], \DeclareOption,
. \newcounter,

of the xkeyval package:
. \define@key, \define@boolkey, \define@choicekey, \DeclareOptionX,

and of the kvoptions package:
. \DeclareStringOption, \DeclareBoolOption,

\DeclareComplementaryOption,
\DeclareVoidOption.
What does ‘detects’ mean? It means that the main argument of detected command

will be marked as defined at this point, i.e. thrown to a margin note and indexed with
a ‘definition’ entry. Moreover, for the definitions – an alternate index entries will be
created: of the CSes underlying those definitions, e.g. \newcounter{foo} in the code
will result in indexing foo and \c@foo.

If you want to add detection of a defining command not listed above, use the \De¦\DeclareDefining
clareDefining declaration. It comes in two flavours: ‘sauté’ andwith star. The ‘sauté’
version (without star and without an optional argument) declares a defining command
of the kind of \def and \newcommand: its main argument, whether wrapped in braces

 FMI: the implementation took me / hrs.

or not, is a CS. The starred version (without the optional argument) declares a defin-
ing command of the kind of \newenvironment and \DeclareOption: whose main
mandatory argument is text. Both versions provide an optional argument in which you
can set the keys.

Probably the most important key is type. Its default value is cs and that is set intype
the ‘sauté’ version. Another possible value is text and that is set in the starred version.
You can also set three other types (any keyval setting of the type overrides the default
and ‘starred’ setting): dk, dox or kvo.

dk stands for \define@key and is the type of xkeyval definitions of keys (group
commands). When detected, it scans further code for an optional [〈KVprefix〉], manda-
tory {〈KVfamily〉} and mandatory {〈key name〉}. The default 〈KVprefix〉 is KV, as in
xkeyval.

dox stands for \DeclareOptionX and launches scanning for an optional [〈KV-
prefix〉], optional <〈KVfamily〉> and mandatory {〈option name〉}. Here the default
〈KVprefix〉 is also KV and the default 〈KVfamily〉 is the input file name. If you want
to set another default family (e.g. if the code of foo.sty actually is in file bar.dtx), use
\DeclareDOXHead{〈KVfamily〉}. This declaration has an optional first argument that\DeclareDOXHead
is the default 〈KVprefix〉 for \DeclareOptionX definitions.

kvo stands for the kvoptions package by Heiko Oberdiek. This package provides
a handful of option defining commands (the group commands). Detection of such
a command launches a scan for mandatory {〈option name〉} and alternate indexing
of a CS\〈KVOfamily〉@〈option name〉. The default 〈KVOfamily〉 is the input file name.
Again, if you want to set something else, you are given the \DeclareKVOFam{〈KVO-\DeclareKVOFam
family〉} that sets the default family (and prefix: 〈KVOfamily〉@) for all the commands of
group .

Next key recognised by \DeclareDefining is star. It determines whether thestar
starred version of a defining command should be taken into account. For example,
\newcommand should bedeclaredwith[star=true]while\defwith[star=false].
You can also write just [star] instead of [star=true]. It’s the default if the star key
is omitted.

There are alsoKVpref andKVfam keys if youwant to redeclare the xkeyvaldefinitionsKVpref
KVfam with another default prefix and family.

For example, if you wish \@namedef to be detected (the original LATEX version), de-
clare

\DeclareDefining⋆[star=false]\@namedef
or

\DeclareDefining[type=text,star=false]\@namedef
(as stated above, ⋆ is equivalent to [type=text]).

On the other hand, if you want some of the commands listed above not to be de-
tected, write \HideDefining\〈command〉 in the commentary. If both 〈command〉\HideDefining
and 〈command⋆〉 are detected, then both will be hidden. \HideDefining is always
\global. Later you can resume detection of 〈command〉 and 〈command⋆〉 with \Re¦\ResumeDefining
sumeDefining〈command〉 which is always \global too. Moreover, if you wish to
suspend automatic detection of the defining 〈command〉 only once (the next occur-
rence), there is \HideDefining⋆ which suspends detection of the next occurrence of
〈command〉. So, if you wish to ‘hide’ \providecommand⋆ once, write

\HideDefining⋆\providecommand⋆

If you wish to turn entire detection mechanism off, write \HideAllDefining in\HideAllDefining

 The star key is provided because the default setting of \MakePrivateLetters is such that ⋆ is
a letter so e.g. \newcommand⋆ is scanned as one CS. However, if the \makestarlow declaration is in force
(e.g. with the gmdocc) this is not so—\newcommand⋆ is scanned as the CS \newcommand and a star.

the narration layer. Then you can resume detection with \ResumeAllDefining. Both\ResumeAllDefining
declarations are \global.

The basic definition command, \def, seems to me a bit ambiguous. Definitely not
always it defines important macros. But first of all, if you \def a CS excluded from
indexing (see section Index ex/inclusions), it will not be marked even if detection of
\def is on. But if the \def’s argument is not excluded from indexing and you still don’t
want it to be marked at this point, you can write \HideDefining⋆\def or \UnDef for\UnDef
short.

If you don’t like \def to be detected more times, you may write \HideDefining%
\def of course, but there’s a shorthand for this: \HideDefwhich has the starred version\HideDef
\HideDef* equivalent to \UnDef. To resume detection of \def you are provided also\HideDef
a shorthand, \ResumeDef (but \ResumeDefining\def also works).\ResumeDef

Since I use \pdef most often, I provide also \UnPdef, analogous to \UnDef.\UnPdef
If you define things not with easily detectable commands, you can mark them ‘man-

ually’, with the \Define declaration described in the next section.

Manual Marking of the Macros and Environments

The concept (taken from doc) is to index virtually all the control sequences occurring in
the code. gmdoc does that by default and needs no special command. (See below about
excluding some macros from being indexed.)

The next concept (also taken from doc) is to distinguish some occurrences of some
control sequences by putting such a sequence into a marginpar and by special format-
ting of its index entry. That is what I call marking the macros. gmdoc provides also
a possibility of analogous marking for the environments’ names and other sequences
such as ^^A.

This package provides two kinds of special formatting of the index entries: ‘usage’,
with the reference number italic by default, and ‘def’ (in doc called ‘main’), with the ref-
erence number roman (upright) and underlined by default. All the reference numbers,
also those with no special formatting, are made hyperlinks to the page or the codeline
according to the respective indexing option (see p.).

The macros and environments to be marked appear either in the code or in the com-
mentary. But all the definitions appear in the code, I suppose. Therefore the ‘def’ mark-
ing macro is provided only for the code case. So we have the \Define, \CodeUsage\Define

\CodeUsage and \TextUsage commands.
\TextUsage The arguments to all three are as follows:

[⋆] to indicate whether we mark a single CS or more than one token(s): without
star for a singleCS, with star for environment names etc., the starred version executes
\@sanitize,

[#] o version to be marginized and printed here,
m version to be put to the index, and also (printed here and) marginized if the

previous argument is missing.
Note that if you give a single CS to the starred version (e.g. the next \MakePri¦

vateLetters is done so to hyphenate it in the text), you have to wrap it in braces be-
cause command \@sanitizes the specials including backslash.

You don’t have to bother whether @ is a letter while documenting because even if not,
these commands do make it a letter, or more precisely, they execute \MakePrivate¦\MakePrivateLetters
Letters whatever it does: At the default settings this command makes ⋆ a letter, too,
so a starred version of a command is a proper argument to any of the three commands
unstarred.

The \Define and \CodeUsage commands, if unstarred, mark the next scanned oc-
currence of their argument in the code. (By ‘scanned occurrence’ I mean a situation of
the CS having been scanned in the code which happens iff its name was preceded by the

char declared as \CodeEscapeChar). The starred versions of those commands mark
just the next codeline and don’t make TEX looks for the scanned occurrence of their ar-
gument (which would never happen if the argument is not a CS). Therefore, if you want
to mark a definition of an environment foo, you should put

%\Define⋆{foo}

right before the code line

\newenvironment{foo}{%

i.e., not separated by another code line. The starred versions of the \Code… commands
are also intended to mark implicit definitions of macros, e.g., \Define⋆\@foofalse
before the line

\newif\if@foo.
They both are \outer to discourage their use inside macros because they actually

re\catcode before taking their arguments.
The \TextUsage (one-argument) command is intended to mark usage of a verba-

tim occurrence of a TEX object in the commentary. Unlike \CodeUsage or \Define, it
typesets its argument which means among others that the marginpar appears usually
at the same line as the text you wanted to mark. This command also has the starred
version primarily intended for the environments names, and secondarily for ^^A-likes
and CSes, too. Currently, the most important difference is that the unstarred version ex-
ecutes \MakePrivateLetters while the starred does both \MakePrivateLetters
and \MakePrivateOthers before reading the argument.

If you consider themarginpars a sort of sub(sub…)sectionmarks, then youmaywish
to have a command that makes a marginpar of the desired CS(or whatever) at the be-
ginning of its description, which may be fairly far from the first occurrence of its object.
Then you have the \Describe command which puts its argument in a marginpar and\Describe
indexes it as a ‘usage’ entry but doesn’t print it in the text. It’s \outer.

All four commands just described put their (\stringed) argument into amarginpar
(if the marginpars are enabled) and create an index entry (if indexing is enabled).

But what if youwant just to make amarginpar withmacro’s or environment’s name?
Then you have \CodeMarginize to declare what to put into a marginpar in the TEX\CodeMarginize
code (it’s \outer) and \TextMarginize to do so in the commentary. According to\TextMarginize
the spirit of this part of the interface, these commands also take one argument and have
their starred versions for strings other than control sequences.

The marginpars (if enabled) are ‘reverse’ i.e., at the left margin, and their contents is
flush right and typeset in a font declared with \marginpartt. By default, this decla-\marginpartt
ration is \let to \tt but it may be advisable to choose a condensed font if there is any.
Such a choice is made by gmdocc.cls if the Latin Modern fonts are available: in this case
gmdocc.cls uses Latin Modern Typewriter Light Condensed.

If you need to put something in a marginpar without making it typewriter font,
there’s the \gmdmarginpar macro (that takes one and mandatory argument) that only\gmdmarginpar
flushes its contents right.

On the other hand, if you don’t want to put a CS(or another verbatim text) in
a marginpar but only to index it, then there are \DefIndex and \CodeUsgIndex to\DefIndex

\CodeUsgIndex declare special formatting of an entry. The unstarred versions of these commands look
for their argument’s scanned occurrence in the code (the argument should be a CS), and
the starred ones just take the next code line as the reference point. Both these commands
are \outer.

In the code all the control sequences (except the excluded ones, see below) are in-
dexed by default so no explicit command is needed for that. But the environments and
other special sequences are not and the two commands described above in their ⋆ed

versions contain the command for indexing their argument. But what if you wish to
index a not scanned stuff as a usual entry? The \CodeCommonIndex* comes in rescue,\CodeCommonIndex
starred for the symmetry with the two previous commands (without ⋆ it just gobbles
it’s argument—it’s indexed automatically anyway). It’s \outer.

Similarly, to index a TEX object occurring verbatim in the narrative, you have \Text¦\TextUsgIndex
UsgIndex and \TextCommonIndex commands with their starless versions for a CS\TextCommonIndex
argument and the starred for all kinds of the argument.

Moreover, as in doc, the macro and environment environments are provided. Bothmacro
environment take one argument that should be a CS for macro and ‘whatever’ for environment.

Both add the \MacroTopsep glue before and after their contents, and put their argu-
ment in a marginpar at the first line of their contents (since it’s done with \strut, you
should not put any blank line (%ed or not) between \begin{macro/environment}
and the first line of the contents). Then macro commands the first scanned occurrence
of its argument to be indexed as ‘def’ entry and environment commands TEX to index
the argument as if it occurred in the next code line (also as ‘def’ entry).

Since it’s possible that you define a CS implicitly i.e., in such a way that it cannot
be scanned in the definition (with \csname…\endcsname e.g.) and wrapping such
a definition (and description) in an environment environment would look misguid-
edly ugly, there’s the macro⋆ environment which TEXnically is just an alias for envi¦
ronment.

(To be honest, if you give a macro environment a non-CS argument, it will accept it
and then it’ll work as environment.)

Index ex/inclusions

It’s understandable that you don’t want some control sequences to be indexed in your
documentation. The doc package gives a brilliant solution: the \DoNotIndex declara-\DoNotIndex
tion. So do I (although here, TEXnically it’s done another way). ItOCSR. This declaration
takes one argument consisting of a list of control sequences not to be indexed. The items
of this list may be separated with commas, as in doc, but it’s not obligatory. The whole
list should come in curly braces (except when it’s one-element), e.g.,

\DoNotIndex{\some@macros,\are⋆␣\too\auxiliary\?}

(The spaces after the control sequences are ignored.) You may use as many \DoNotIn¦
dexes as you wish (about half as many as many CSes may be declared, because for each
CS excluded from indexing a special CS is declared that stores the ban sentence). Ex-
cluding the same CS more than once makes no problem.

I assume you wish most of LATEX macros, TEX primitives etc. to be excluded from
your index (as I do). Therefore gmdoc excludes some CSes by default. If you don’t
like it, just set the indexallmacros package option.

On the third hand, if you like the default exclusions in general but wish to undo just
a couple of them, you are given \DoIndex declaration (OCSR) that removes a ban on all\DoIndex
the CSes given in the argument, e.g.,

\DoIndex{\par␣\@@par␣\endgraf}

Moreover, you are provided the \DefaultIndexExclusions and \UndoDef¦\DefaultIndexExclusions
\UndoDefaultIndexExclusions aultIndexExclusions declarations that act according to their names. You may use

them in any configurationwith the indexallmacros option. Both of these declarations
OCSR.

 After reading doc’s documentation ;-) .

The DocStrip directives

gmdoc typesets the DocStrip directives and it does it quite likely as doc, i.e., with math
sans serif font. It does it automatically whether you use the traditional settings or the
new.

Advised by my TEX Guru, I didn’t implement the module nesting recognition (MW
told it’s not that important.)

So far verbatim mode directive is only half-handled. That is, a line beginning with
%<<〈END-TAG〉 will be typeset as a DocStrip directive, but the closing line %〈END-
TAG〉will be not. It doesn’t seem to be hard to implement, if I only receive somemessage
it’s really useful for someone.

The changes history

The doc’s documentation reads:
“Tomaintain a change historywithin the file, the\changes commandmaybeplaced

amongst the description part of the changed code. It takes three arguments, thus:

\changes[〈\cs〉]{〈version〉}{〈YYYY/MM/DD date〉}{〈text〉}

or, if you prefer the \ProvidesPackage/Class syntax,

\chgs[〈\cs〉]{〈〈YYYY/MM/DD〉 〈version〉 〈text〉〉}
The optional \cs argument may be a CS(with backslash) or a string. By default it’s

the most recently defined CS (see section about automatic detection of definitions).
The changes may be used to produce an auxiliary file (LATEX’s \glossary mecha-

nism is used for this) which may be printed after suitable formatting. The \changes
[command] encloses the 〈date〉 in parentheses and appends the 〈text〉 to form the
printed entry in such a change history [… obsolete remark omitted].

To cause the change information to be written out, include \RecordChanges in\RecordChanges
the driver[’s preamble or just in the source file (gmdocc.cls does it for you)]. To read
in and print the sorted change history (in two columns), just put the \PrintChanges\PrintChanges
command as the last (commented-out, and thus executed during the documentation
pass through the file) command in your package file [or in the driver]. Alternatively,
this commandmay form one of the arguments of the \StopEventually command, al-
though a change history is probably not required if only the description is being printed.
The command assumes that MakeIndex or some other program has processed the .glo
file to generate a sorted .gls file. You need a special MakeIndex style file; a suitable one
is supplied with doc [and gmdoc], called [… gmglo.ist for gmdoc]. The \GlossaryMin,\GlossaryMin
\GlossaryPrologue and \GlossaryParms macros are analogous to the \Index…\GlossaryPrologue

\GlossaryParms versions [see sec. The parameters p.]. (The LATEX ‘glossary’ mechanism is used for the
change entries.)”

In gmdoc (unless you turn definitions detection off), you can put \changes after
the line of definition of a command to set the default argument of \changes to that
command. For example,

\newcommand⋆\dodecaphonic{…}
% \changes{v.e}{//}{renamed from \cs{DodecaPhonic}}

results with a history (sub)entry:
v.e

(…)
\dodecaphonic:

renamed from \DodecaPhonic,
Such a setting is in force till the next definition and every detected definition resets it.

In gmdoc \changes is \outer.

As mentioned in the introduction, the glossary, the changes history that is, uses
a special MakeIndex style, gmglo.ist. This style declares another set of the control chars
but you don’t have to worry: \changes takes care of setting them properly. To be pre-
cise, \changes executes \MakeGlossaryControls that is defined as\MakeGlossaryControls

\def\actualchar{=} \def\quotechar{!}%
\def\levelchar{>} \edef\encapchar{\xiiclub}

Only if youwant to add a control character yourself in a changes entry, to quote some
char, that is (using level or encapsulation chars is not recommended since \changes
uses them itself), use rather \quotechar.

Before writing an entry to the .glo file, \changes checks if the date (the sec-
ond mandatory = the third argument) is later than the date stored in the counter
ChangesStartDate. You may set this counter with aChangesStartDate

\ChangesStart \ChangesStart{〈version〉}{〈year〉/〈month〉/〈day〉}

declaration.
If the ChangesStartDate is set to a date contemporary to TEX i.e., not earlier than

September , then a note shall appear at the beginning of the changes history that
informs the reader of omitting the earlier changes entries.

If the date stored in ChangesStartDate is earlier than TEX, no notification of omit-
ting shall be printed. This is intended for a rather tricky usage of the changes start date
feature: you may establish two threads of the changes history: the one for the users,
dated with four digit year, and the other for yourself only, dated with two or three digit
year. If you declare

\ChangesStart{〈version?〉}{//}

or so, the changes entries dated with less-than-four digit year shall be omitted and no
notification shall be issued of that.

While scanning the CSes in the code, gmdoc counts them and prints the information
about their number on the terminal and in .log. Moreover, you may declare \Check¦\CheckSum
Sum{〈number〉} before the code and TEX will inform you whether the number stated by
you is correct or not, and what it is. As you guess, it’s not my original idea but I took it
from doc.

There it is provided as a tool for testing whether the file is corrupted. My TEX Guru
says it’s a bit old-fashioned nowadays but I like the idea and use it to document the file’s
growth. For this purpose gmdoc types out lines like

% \chschange{v.j}{//}{}
% \chschange{v.j}{//}{}

and youmay place them at the beginning of the source file. Such a line results in setting
the check sum to the number contained in the last pair of braces and inmaking a ‘general’
changes entry that states the check sum for version 〈first brace〉 dated 〈second brace〉 was
〈third brace〉.

There is also \toCTAN{〈date〉␣〈version〉}, a shorthand for\toCTAN

\chgs{〈date〉␣〈version〉␣put␣to␣\acro{CTAN}␣on␣〈date〉}

The parameters

The gmdoc package provides some parameters specific to typesetting the TEX code:
\stanzaskip

\stanzaskip is a vertical space inserted when a blank (code) line is met. It’s equal
\medskipamount by default. Subsequent blank code lines do not increase this space.

At the points where narration begins a new line after the code or an in-line comment
and where a new code line begins after the narration (that is not an in-line comment),
a \CodeTopsep glue is added. At the beginning and the end of a macro or environ¦\CodeTopsep
ment environment a \MacroTopsep glue is added. By default, these two skips are set
equal \stanzaskip.

The \stanzaskip’s value is assigned also to the display skips and to \topsep.
This is done with the \UniformSkips declaration executed by default. If you want\UniformSkips
to change some of those values, you should declare \NonUniformSkips in the pream-\NonUniformSkips
ble to discard the default declaration. (To be more precise, by default \UniformSkips
is executed twice: when loading gmdoc and again \AtBeginDocument to allow you
to change \stanzaskip and have the other glues set due to it. \NonUniformSkips
relaxes the \UniformSkips’s occurrence at \begin{document}.)

If you want to add a vertical space of \CodeTopsep (equal by default \stanza¦
skip), you are provided the \stanza command. Similarly, if you want to add a verti-\stanza
cal space of the \MacroTopsep amount (by default also equal \stanzaskip), you are
given the \chunkskip command. They both act analogously to \addvspace i.e., don’t\chunkskip
add two consecutive glues but put the bigger of them.

Since \CodeTopsep glue is inserted automatically at each transition from the code
(or code with an in-line comment) to the narration and reverse, it may happen that you
want not to add such a glue exceptionally. Then there’s the \nostanza command. You\nostanza
can use it before narration to remove the vskip before it or after narration to suppress
the vskip after it.

The TEX code is indented with the \CodeIndent glue and a leading space increases\CodeIndent
indentation of the line by its (space’s) width. The default value of \CodeIndent is
. em.

There’s also a parameter for the indent of the narration, \TextIndent, but you\TextIndent
should use it only in emergency (otherwise what would be the margins for?). It’s sp
by default.

By default, the end of a \DocInput file is marked with
‘ �’

given by the \EOFMark macro.\EOFMark

If you do use the ε-TEX’s primitive \everyeof, be sure the contents of it begins with\everyeof
\relax because it’s the token that stops the main macro scanning the code.

The crucial concept of gmdoc is to use the line end character as a verbatim group
opener and the comment char, usually the %, as its delimiter. Therefore the ‘knowledge’
what char starts a commentary is for this package crucial and utterly important. The
default assumption is that you use % as we all do. So, if you use another character, then
you should declare it with \CodeDelim typing the desired char preceded by a back-\CodeDelim
slash, e.g., \CodeDelim\& . (As just mentioned implicitly, \CodeDelim\% is declared
by default.)

This declaration is always global so when- and wherever you change your mind you
should express it with a new \CodeDelim declaration.

The unstarred version of \CodeDelim changes also the verb ‘hyphen’, the char ap-
pearing at the verbatim line breaks that is and affects the \narrationmark which by\narrationmark

 DEK in TEX The Program mentions that month as of TEX Version release.

default typesets % followed by an en space.
The starred version, \CodeDelim*, changes only the code delimiter and the char\CodeDelim

typeset remains untouched. Most probably you shouldn’t use the starred version.

Talking of special chars, the escape char, \ by default, is also very important for this
package as it marks control sequences and allows automatic indexing them for instance.
Therefore, if you for any reason choose another than \ character to be the escape char,
you should tell gmdoc about it with the \CodeEscapeChar declaration. As the previous\CodeEscapeChar
one, this too takes its argument preceded by a backslash, e.g., \CodeEscapeChar\!.
(As you may deduct from the above, \CodeEscapeChar\\ is declared by default.)

The tradition is that in the packages @ char is a letter i.e., of catcode . Frank Mit-
telbach in doc takes into account a possibility that a user wishes some other chars to be
letters, too, and therefore he (F.M.) provides the \MakePrivateLetters macro. So do\MakePrivateLetters
I and like in doc, this macro makes @ sign a letter. It also makes ⋆ a letter in order to
cover the starred versions of commands.

Analogously but for a slightly different purpose, the\AddtoPrivateOthersmacro\AddtoPrivateOthers
is provided here. It adds its argument, which is supposed to be a one-char CS, to the
\doprivateothers list, whose rôle is to allow some special chars to appear in the
marking commands’ arguments (the commands described in section Macros for mark-
ing the macros). The default contents of this list is ␣ (the space) and ^ so you may mark
the environments names and special sequences like ^^A safely. This list is also extended
with every char that is \MakeShortVerbed. (I don’t see a need of removing chars from
this list, but if you do, please let me know.)

The line numbers (if enabled) are typeset in the \LineNumFont declaration’s scope,\LineNumFont
which is defined as {\normalfont\tiny} by default. Let us also remember, that for
each counter there is a \the〈counter〉macro available. The counter for the line numbers
is called codelinenum so the macro printing it is \thecodelinenum. By default wecodelinenum
don’t change its LATEX’s definition which is equivalent to \arabic{codelinenum}.

Three more parameter macros, are \IndexPrefix, \EntryPrefix and \HLPre¦\IndexPrefix
\EntryPrefix

\HLPrefix
fix. All three are provided with the account of including multiple files in one doc-
ument. They are equal (almost) \@empty by default. The first may store main level
index entry of which all indexed macros and environments would be sub-entries, e.g.,
the name of the package. The third may or even should store a text to distinguish equal
codeline numbers of distinct source files. It may be the file name too, of course. The
secondmacro is intended for another concept, namely the one from ltxdoc class, to distin-
guish the codeline numbers from different files in the index by the file marker. Anyway,
if you document just one file per document, there’s no need of redefining those macros,
nor when you input multiple files with \DocInclude.

gmdoc automatically indexes the control sequences occurring in the code. Their index
entries may be ‘common’ or distinguished in two (more) ways. The concept is to distin-
guish the entries indicating the usage of the CS and the entries indicating the definition
of the CS.

The special formattings of ‘usage’ and ‘def’ index entries are determined by \Usg¦\UsgEntry
Entry and \DefEntry one-parameter macros (the parameter shall be substituted with\DefEntry
the reference number) and by default are defined as \textit and \underline respec-
tively (as in doc).

There’s one more parameter macro, \CommonEntryCmd that stores the name of the\CommonEntryCmd
encapsulation for the ‘common’ index entries (not special) i.e., a word that’ll become
a CS that will be put before an entry in the .ind file. By default it’s defined as {re¦
lax} and a nontrivial use of it you may see in the source of chapter , where \def%
\CommonEntryCmd{UsgEntry} makes all the index entries of the driver formatted as
‘usage’.

The index comes in a multicols environment whose columns number is deter-
mined by the IndexColumns counter set by default to . To save space, the index beginsIndexColumns
at the same page as the previous text provided there is at least \IndexMin of the page\IndexMin
height free. By default, \IndexMin = .pt.

The text put at the beginning of the index is declared with a one-argument \Ind¦\IndexPrologue
exPrologue. Its default text at current index option you may admire on page . Of
course, you may write your own \IndexPrologue{〈brand new index prologue〉}, but if
you like the default and want only to add something to it, you are provided \AtDIPro¦\AtDIPrologue
logue one-argument declaration that adds the stuff after the default text. For instance,
I used it to add a label and hypertarget that is referred to two sentences earlier.

By default the colour of the index entry hyperlinks is set black to let Adobe Reader
work faster. If you don’t want this, \let\IndexLinksBlack\relax. That leaves the\IndexLinksBlack
index links colour alone and hides the text about black links from the default index
prologue.

Other index parameters are set with the \IndexParms macro defined in line of\IndexParms
the code. If youwant to change some of them, you don’t have to use \renewcommand⋆%
\IndexParms and set all of the parameters: you may \gaddtomacro\IndexParms{%\gaddtomacro
〈only the desired changes〉}. (\gaddtomacro is an alias for LATEX’s \g@addto@macro
provided by gmutils.)

At the default gmdoc settings the .idx file is prepared for the default settings of
MakeIndex (no special style). Therefore the index control chars are as usual. But if you
need to use other chars as MakeIndex controls, know that they are stored in the four
macros: \actualchar, \quotechar, \levelchar and \encapchar whose mean-\actualchar

\quotechar
\levelchar
\encapchar

ing you infer from their names. Any redefinition of them should be done in the preamble
because the first usage of them takes place at \begin{document} and on it depends
further tests telling TEX what characters of a scanned CS name it should quote before
writing it to the .idx file.

Frank Mittelbach in doc provides the \verbatimchar macro to (re)define the
\verb’s delimiter for the index entries of the scanned CS names etc. gmdoc also uses
\verbatimchar but defines it as {&}. Moreover, a macro that wraps a CS name in\verbatimchar
\verb checks whether the wrapped CS isn’t \& and if it is, is taken as the delimiter.
So there’s hardly chance that you’ll need to redefine \verbatimchar.

So strange delimiters are chosen deliberately to allow any ‘other’ chars in the envi-
ronments names.

There’s a quadratus of commands taken from doc: \StopEventually, \Finale,\StopEventually
\Finale \AlsoImplementation and \OnlyDescription that should be explained simulta-

\AlsoImplementation
\OnlyDescription

neously (in a polyphonic song e.g.).
The \OnlyDescription and \AlsoImplementation declarations are intended

to exclude or include the code part from the documentation. The point between the
description and the implementation part should bemarkedwith \StopEventually{%
〈the stuff to be executed anyway〉} and \Finale should be typed at the end of file. Then
\OnlyDescription defines \StopEventually to expand to its argument followed
by \endinput and
\AlsoImplementation defines \StopEventually to do nothing but pass its argu-
ment to \Finale.

The narration macros

To print the control sequences’ names you have the \verb macro and its ‘shortverb’\verb
version whatever you define (see the gmverb package).

For short verbatim texts in the in-line comments gmdocprovides the\inverb〈a char〉…〈a char〉\inverb
(the name stands for ‘in-line verbatim’) command that redefines the gmverb breakables

to break with % at the beginning of the lower line to avoid mistaking such a broken
verbatim commentary text for the code.

But nor \verb[⋆] neither \inverb will work if you put them in an argument of an-
other macro. For such a situation, or if you just prefer, gmdoc (gmutils) provides a robust
command \cs, which takes one obligatory argument, the macro’s name without the\cs
backslash, e.g., \cs{mymacro} produces \mymacro. I take account of a need of print-
ing some other text verbatim, too, and therefore \cs has the first argument optional,
which is the text to be typeset before the mandatory argument. It’s the backslash by
default, but if you wish to typeset something without the \, you may write \cs[]{%
not␣␣a~macro}. Moreover, for typesetting the environments’ names, gmdoc (gmutils)
provides the \env macro, that prints its argument verbatim and without a backslash,\env
e.g., \env{an␣environment} produces an environment.

For usage in the in-line comments there are \incs and \inenv commands that take\incs
\inenv analogous arguments and precede the typeset command and environment names with

a % if at the beginning of a new line. To those who like \cmd, there is also \incmd, an\incmd
in-line version of the former.

And for line breaking at \cs and \env there is \nlperc to ensure % at the beginning\nlperc
of a new line and \+ to use in \cs and \env argument for a discretionary hyphen that’ll\+
break to - at the end of the upper line and % at the beginning of the lower line. By default
hyphenation of \cs and \env arguments is off, you can allow it only at \- or \+.

There is also \nlpercent if you wish a discretionary % without \incs or \inverb.\nlpercent

By default the multi-line in-line comments are typeset with a hanging indent (that is
constant relatively to the current indent of the code) and justified. Since vertical align-
ment is determined by the parameters as they are at the moment of \par, no one can
set the code line to be typeset ragged right (to break nicely if it’s long) and the following
in-line comment to be justified. Moreover, because of the hanging indent the lines of
multi-line in-line comments are relatively short, you may get lots of overfulls. Therefore
there is a Boolean switch ilrr (OCSR), whose name stands for ‘In-Line Ragged-Right’ilrr
and the in-line comments (and their codelines) are typeset justified in the scope of \il¦
rrfalse which is the default. When you write \ilrrtrue, then all in-line comments
in its scope (and their codelines) will be typeset ragged right (and still with the hanging
indent). Moreover, you are provided \ilrr and \ilju commands that set \ilrrtrue\ilrr

\ilju and \ilrrfalse for the current in-line comment only. Note you can use them any-
where within such a comment, as they set \rightskip basically. \ilrr and \ilju
are no-ops in the stand-alone narration.

To print packages’ names sans serif there is a \pk one-argument command, and the\pk
\file command intended for the filenames.\file

Because we play a lot with the \catcodes here and want to talk about it, there are
\catletter, \catother and \catactive macros that print , and respectively\catletter

\catother
\catactive

to concisely mark the most used char categories.
I wish my self-documenting code to be able to be typeset each package separately

or several in one document. Therefore I need some ‘flexible’ sectioning commands and
here they are: \division, \subdivision and \subsubdivision so far, that by de-\division

\subdivision
\subsubdivision

fault are \let to be \section, \subsection and \subsubsection respectively.

One more kind of flexibility is to allow using mwcls or the standard classes for the
same file. There was a trouble with the number and order of the optional arguments of
the original mwcls’s sectioning commands.

It’s resolved in gmutils so you are free at this point, and even more free than in the
standard classes: if you give a sectioning command just one optional argument, it will
be the title to toc and to the running head (that’s standard in scls). If you give two

 See gmutils for some subtle details.

optionals, the first will go to the running head and the other to toc. (In both cases the
mandatory argument goes only to the page).

If you wish the \DocIncluded files make other sectionings than the default, you
may declare \SetFileDiv{〈sec name without backslash〉}.\SetFileDiv

gmdoc.sty provides also an environment gmlonely to wrap some text you think yougmlonely
may want to skip some day. When that day comes, you write \skipgmlonely before\skipgmlonely
the instances of gmlonely you want to skip. This declaration has an optional argu-
ment which is for a text that’ll appear in(stead of) the first gmlonely’s instance in every
\DocInput or \DocIncluded file within \skipgmlonely’s scope.

An example of use you may see in this documentation: the repeated passages about
the installation and compiling the documentation are skipped in further chapters thanks
to it.

gmdoc (gmutils, to be precise) provides some TEX-related logos:
typesets AMS-TEX,\AmSTeX
BTEX,\BibTeX
SLTEX,\SliTeX
P TEX,\PlainTeX
W,\Web
The TEX book,\TeXbook
The TEX book\TB
ε-TEX,\eTeX
pdfε-TEX\pdfeTeX
pdfTEX\pdfTeX
X ETEX (the first E will be reversed if the graphics package is loaded or X ETEX is at work)\XeTeX
and
(LA)TEX.\LaTeXpar
DocStrip not quite a logo, but still convenient.\ds

The copyrnote environment is provided to format the copyright note flush left incopyrnote
\obeylines’ scope.

To put an arbitrary text into amarginpar and have it flushed right just like themacros’
names, you are provided the \gmdmarginpar macro that takes one mandatory argu-\gmdmarginpar
ment which is the contents of the marginpar.

To make a vertical space to separate some piece of text you are given two macros:
\stanza and \chunkskip. The first adds \stanzaskip while the latter \Macro¦\stanza

\chunkskip Topsep. Both of them take care of not cumulating the vspaces.

The quotation environment is redefined just to enclose its contents in doublequotation
quotes.

If you don’t like it, just call \RestoreEnvironment{quotation} after loading gm-
doc. Note however that other environments using quotation, such as abstract, keep
their shape.

The\GetFileInfo{〈file namewith extension〉} commanddefines\filedate, \fil¦\GetFileInfo
\filedate

\fileversion
eversion and \fileinfo as the respective pieces of the info (the optional argument)

\fileinfo
provided by \ProvidesClass/Package/File declarations. The information of the
file you process with gmdoc is provided (and therefore getable) if the file is also loaded
(or the \Provide… line occurs in a \StraightEOL scope).

If the input file doesn’t contain \Provides… in the code layer, there are com-
mands \ProvideFileInfo{〈file name with extension〉}[〈info〉]. (〈info〉 should consist\ProvideFileInfo
of: 〈year〉/〈month〉/〈day〉␣〈version number〉␣〈a short note〉.)

Since we may documentally input files that we don’t load, doc in gmdoc e.g., we pro-
vide a declaration to be put (in the comment layer) before the line(s) containing \Pro¦
vides…. The \FileInfo command takes the subsequent stuff till the closing] and\FileInfo
subsequent line end, extracts from it the info and writes it to the .aux and rescans the
stuff. We use an ε-TEX primitive \scantokens for that purpose.

A macro for the standard note is provided, \filenote, that expands to “This file\filenote
has version number 〈version number〉 dated 〈date〉.” To place such a note in the docu-
ment’s title (or heading, with \DocInclude at the default settings), there’s \thfile¦\thfileinfo
info macro that puts \fileinfo in \thanks.

Since \noindent didn’t want to cooperate with my code and narration layers some-
times, I provide \gmdnoindent that forces a not indented paragraph if \noindent\gmdnoindent
could not.

If you declare the code delimiter other than % and then want % back, you may write
\CDPerc instead of \CodeDelim⋆\%.\CDPerc

If you like & as the code delimiter (as I did twice), you may write \CDAnd instead of\CDAnd
\CodeDelim\&.

To get ‘CS’ which is ‘CS’ in small caps (in \acro to be precise), you can write \CS.\CS
This macro is \protected so you can use it safely in \changes e.g. Moreover, it checks
whether the next token is a letter and puts a space if so so you don’t have to bother about
\CS\␣.

To enumerate the list of command’s arguments or macro’s parameters there is the
enumargs environment which is a version of enumerate with labels like #. You canenumargs
use \item or, at your option, \mand which is just an alias for the former. For an optional\mand
arguments use \opt which wraps the item label in square brackets. Moreover, to align\opt
optional andmandatory arguments digit under digit, use the enumargs⋆ environment.enumargs⋆

Both environments take an optional argument which is the number of #s. It’s by
default, but also can be or (other numbers will typeset numbers without a #). Please
feel free to notify me if you really need more hashes in that environment.

For an example driver file see chapter The driver.

A queerness of \label
You should be loyally informed that \label in gmdoc behaves slightly non-standard in
the \DocInput/ Included files: the automatic redefinitions of \ref at each code line
are global (since the code is typeset in groups and the \refs will be out of those groups),
so a \reference in the narrative will point at the last code line not the last section, unlike
in the standard LATEX.

doc-compatibility

One of my goals while writing gmdoc was to make compilation of doc-like files with
gmdoc possible. I cannot guarantee the goal has been reached but I did compile doc.dtx
with not a smallest change of that file (actually, there was a tiny little buggie in line
which I fixed remotely with \AfterMacrocode tool written specially for that). So, if
you wish to compile a doc-like file with my humble package, just try.\AfterMacrocode

\AfterMacrocode{〈mcnumber〉}{〈the stuff〉}defines control sequence\gmd@mchook〈mc
number〉 with the meaning 〈the stuff〉 which is put at the end of macrocode and oldmc
number 〈mc number〉 (after the group).

The doc commands most important in my opinion are supported by gmdoc. Some
commands, mostly the obsolete in my opinion, are not supported but give an info on
the terminal and in .log.

I assume that if one wishes to use doc’s interface then they won’t use gmdoc’s options
but just the default. (Some gmdoc options may interfere with some doc commands, they
may cancel them e.g.)

The main input commands compatible with doc are \OldDocInput and \DocIn¦\OldDocInput
\DocInclude clude, the latter however only in the \olddocIncludes declaration’s scope.

\olddocIncludes Within their scope/argument the macrocode environments behave as in doc, i.e.
macrocode they are a kind of verbatim and require to be ended with %␣␣␣␣\end{macrocode[⋆]}.

The default behaviour of macrocode[⋆] with the ‘new’ input commands is different
however. Remember that in the ‘new’ fashion the code and narration layers philosophy
is in force and that is sustained within macrocode[⋆]. Which means basically that with
‘new’ settings when you write

% \begin{macrocode}
\alittlemacro % change it to \blaargh

%\end{macrocode}

and \blaargh’s definition is {foo}, you’ll get

\alittlemacro␣% change it to foo

(Note that ‘my’ macrocode doesn’t require the magical %␣␣␣␣\end.)
If you are used to the traditional (doc’s) macrocode and still wish to use gmdoc new

way, you have at least two options: there is the oldmc environment analogous to theoldmc
traditional (doc’s) macrocode (it also has the starred version), that’s the first option
(I needed the traditional behaviour once in this documentation, find out where & why).
The other is to write \OldMacrocodes. That declaration (OCSR) redefines macrocode\OldMacrocodes
and macrocode⋆ to behave the traditional way. (It’s always executed by \OldDocIn¦
put and \olddocIncludes.)

For a more detailed discussion of what is doc-compatible and how, see the code sec-
tion doc-compatibility.

The driver part

In case of a single package, such as gmutils, a driver part of the package may look as
follows and you put it before \ProvidesPackage/Class.

% \skiplines we skip the driver
\ifnum\catcode`\@=

\documentclass[outeroff, pagella, fontspec=quiet]{gmdocc}
\usepackage{eufrak}% for |\continuum| in the commentary.
\twocoltoc
\begin{document}

\DocInput{\jobname.sty}
\PrintChanges
\thispagestyle{empty}
\typeout{%

Produce change log with^^J%
makeindex -r -s gmglo.ist -o \jobname.gls \jobname.glo^^J
(gmglo.ist should be put into some texmf/makeindex

directory.)^^J}
\typeout{%

Produce index with^^J%
makeindex -r \jobname^^J}

\afterfi{\end{document}}

\fi% of driver pass
%\endskiplines

The advantage of \skiplines…\endskiplines over \iffalse…\fi is that the\skiplines
\endskiplines latter has to contain balanced \ifs and \fis while the former hasn’t because it sanitises

the stuff. More precisely, it uses the \dospecials list, so it sanitises also the braces.
Moreover, when the countalllines[⋆] option is in force, \skipfiles…\end¦

skipfiles keeps the score of skipped lines.
Note %\iffalse … %\fi in the code layer that protects the driver against being

typeset.
But gmdoc is more baroque and we want to see the driver typeset—behold.

 \ifnum\catcode`\@=

 \errorcontextlines=

 \documentclass[countalllines,␣codespacesgrey,␣outeroff,␣
debug,␣mwrep,

 pagella,␣trebuchet,␣cursor,␣fontspec=quiet]{gmdocc}

 \verbLongDashes

 \DoNotIndex{\gmu@tempa␣\gmu@tempb␣\gmu@tempc␣\gmu@tempd␣%
\gmu@tempe␣\gmu@tempf}

 \twocoltoc
 \title{The␣\pk{gmdoc}␣Package\\␣i.e.,␣\pk{gmdoc.sty}␣and
 \pk{gmdocc.cls}}
 \author{Grzegorz␣`Natror'␣Murzynowski}
 \date{\ifcase\month\relax\or␣January\or␣February\or␣March\or␣

April\or␣May\or
 June\or␣July\or␣August\or␣September\or␣October\or␣November%

\or
 December\fi\␣\the\year}

%\includeonly{gmoldcomm}

 \begin{document}

 \maketitle

 \setcounter{page}{}% hyperref cries if it sees two pages numbered .
 \tableofcontents
 \DoIndex\maketitle

 \SelfInclude
 \DocInclude{gmdocc}

For your convenience I decided to add the documentations of the three auxiliary
packages:

 \skipgmlonely[\stanza␣The␣remarks␣about␣installation␣and␣
compiling

 of␣the␣documentation␣are␣analogous␣to␣those␣in␣the␣chapter
 \pk{gmdoc.sty}␣and␣therefore␣omitted.\stanza]
 \DocInclude{gmutils}
 \DocInclude{gmiflink}
 \DocInclude{gmverb}

 \DocInclude{gmoldcomm}
 \typeout{%
 Produce␣change␣log␣with^^J%
 makeindex␣-r␣-s␣gmglo.ist␣-o␣\jobname.gls␣\jobname.glo^^J
 (gmglo.ist␣should␣be␣put␣into␣some␣texmf/makeindex␣

directory.)^^J}
 \PrintChanges
 \typeout{%
 Produce␣index␣with^^J%
 makeindex␣-r␣\jobname^^J}
 \PrintIndex

 \afterfi{%
 \end{document}

MakeIndex shell commands:

 makeindex␣-r␣gmdoc
 makeindex␣-r␣-s␣gmglo.ist␣-o␣gmdocDoc.gls␣gmdocDoc.glo

(gmglo.ist should be put into some texmf/makeindex directory.)

And “That’s all, folks” ;-) .

 }\fi% of \ifnum\catcode`\@=, of the driver that is.

The code

For debug

 \catcode`\^^C=\relax

We set the \catcode of this char to in the comment layer.
The basic idea of this package is to re\catcode ^^M (the line end char) and % (or any

other comment char) so that they start and finish typesetting of what’s between them as
the TEX code i.e., verbatim and with the bells and whistles.

The bells and whistles are (optional) numbering of the codelines, and automatic in-
dexing the CSes, possibly with special format for the ‘def’ and ‘usage’ entries.

As mentioned in the preface, this package aims at a minimal markup of the working
code. A package author writes their splendid code and adds a brilliant comment in %ed
lines and that’s all. Of course, if they wants to make a \section or \emphasise, they
has to type respective CSes.

I see the feature described above to be quite a convenience, however it has some price.
See section Life among queer EOLs for details, here I state only that in my opinion the
price is not very high.

More detailedly, the idea is to make ^^M (end of line char) active and to define it to
check if the next char i.e., the beginning of the next line is a % and if so to gobble it and
just continue usual typesetting or else to start a verbatim scope. In fact, every such a line
end starts a verbatim scope which is immediately closed, if the next line begins with
(leading spaces and) the code delimiter.

Further details are typographical parameters of verbatim scope and how to restore
normal settings after such a scope so that a code line could be commented and still
displayed, how to deal with leading spaces, how to allow breaking a moving argument
in two lines in the comment layer, how to index and marginpar macros etc.

The package options

 \RequirePackage{gmutils}[//]% includes redefinition of \newif to
make the switches \protected.

 \RequirePackage{xkeyval}% we need key-vals later, but maybe we’ll make the
option key-val as well.

Maybe someone wants the code lines not to be numbered.

 \newif\if@linesnotnum\if@linesnotnum

 \DeclareOption{linesnotnum}{\@linesnotnumtrue}linesnotnum

And maybe he or she wishes to declare resetting the line counter along with some
sectioning counter him/herself.

 \newif\if@uresetlinecount\if@uresetlinecount

 \DeclareOption{uresetlinecount}{\@uresetlinecounttrue}uresetlinecount

And let the user be given a possibility to count the comment lines.

 \newif\if@countalllines\if@countalllines
 \newif\if@printalllinenos\if@printalllinenos

 \DeclareOption{countalllines}{% to use the \inputlineno primitive andcountalllines
print real line numbers in a file.

 \@countalllinestrue
 \@printalllinenosfalse}

 \DeclareOption{countalllines⋆}{%countalllines⋆
 \@countalllinestrue
 \@printalllinenostrue}

Unlike in doc, indexing themacros is the default and the default reference is the code
line number.

 \newif\if@noindex\if@noindex

 \DeclareOption{noindex}{\@noindextrue}noindex

 \newif\if@pageindex\if@pageindex

 \DeclareOption{pageindex}{\@pageindextrue}pageindex

It would be a great honour to me if someone would like to document LATEX source
with this humble package but I don’t think it’s really probable so let’s make an option
that’ll switch index exclude list properly (see sec. Index exclude list).

 \newif\if@indexallmacros\if@indexallmacros

 \DeclareOption{indexallmacros}{\@indexallmacrostrue}indexallmacros

Some document classes don’t support marginpars or disable them by default (as my
favourite Marcin Woliński’s classes).

 \@ifundefined{if@marginparsused}{\newif\if@marginparsused}{}\if@marginparsused

This switch is copied frommwbk.cls for compatibility with it. Thanks to it loading an
mwcls with [withmarginpar] option shall switch marginpars on in this package, too.

To be compatible with the standard classes, let’s \let:

 \@ifclassloaded{article}{\@marginparsusedtrue}{}

 \@ifclassloaded{report}{\@marginparsusedtrue}{}

 \@ifclassloaded{book}{\@marginparsusedtrue}{}

And if you don’t use mwcls nor standard classes, then you have the options:

 \DeclareOption{withmarginpar}{\@marginparsusedtrue}withmarginpar

 \DeclareOption{nomarginpar}{\@marginparsusedfalse}nomarginpar

The order of the above conditional switches and options is significant. Thanks to it
the options are available also in the standard classes and in mwcls.

To make the code spaces blank (they are visible by default except the leading ones).

 \DeclareOption{codespacesblank}{%codespacesblank
 \AtEndOfPackage{% to allow codespacesgrey,␣codespacesblank
 \AtBeginDocument{\CodeSpacesBlank}}}

 \DeclareOption{codespacesgrey}{%codespacesgrey
 \AtEndOfPackage{% to put the declaration into the begin-document hook after

definition of \visiblespace.
 \AtBeginDocument{\CodeSpacesGrey}}}

 \ProcessOptions

The dependencies and preliminaries

We require another package of mine that provides some tricky macros analogous to the
LATEX standard ones, such as \newgif and \@ifnextcat. Since // it also
makes \if… switches \protected (redefines \newif)

 \RequirePackage{gmutils}[//]

A standard package for defining colours,

 \RequirePackage{xcolor}

and a colour definition for the hyperlinks not to be too bright

 \definecolor{deepblue}{rgb}{,,.}

And the standard package probably most important for gmdoc: If the user doesn’t
load hyperref with their favourite options, we do, with ours. If they has done it, we
change only the links’ colour.

 \@ifpackageloaded{hyperref}{\hypersetup{colorlinks=true,
 linkcolor=deepblue,␣urlcolor=blue,␣filecolor=blue}}{%
 \RequirePackage[colorlinks=true,␣linkcolor=deepblue,␣

urlcolor=blue,
 filecolor=blue,␣pdfstartview=FitH,␣pdfview=FitBH,
 pdfpagemode=UseNone]{hyperref}}

Now a little addition to hyperref, a conditional hyperlinking possibility with the
\gmhypertarget and \gmiflink macros. It has to be loaded after hyperref.

 \RequirePackage{gmiflink}

And a slight redefinition of verbatim, \verb[⋆] and providing of \MakeShort¦
Verb[⋆].

 \RequirePackage{gmverb}[//]

 \Store@Macros{\@verbatim\verb}

 \if@noindex

 \AtBeginDocument{\gag@index}% for the latter macro see line .
 \else
 \RequirePackage{makeidx}\makeindex
 \fi

Now, a crucial statement about the code delimiter in the input file. Providing a spe-
cial declaration for the assignment is intended for documenting the packages that play
with %’s \catcode. Some macros for such plays are defined further.

The declaration comes in the starred and unstarred version. The unstarred version
besides declaring the code delimiter declares the same char as the verb(atim) ‘hyphen’.
The starred version doesn’t change the verb ’hyphen’. That is intended for the special
tricks e.g. for the oldmc environment.

If you want to change the verb ‘hyphen’, there is the \VerbHyphen\〈one char〉 dec-
laration provided by gmverb.

 \def\CodeDelim{\@bsphack\gmu@ifstar\Code@Delim@St\Code@Delim}\CodeDelim

 \def\Code@Delim@St#{%\Code@Delim@St
 {\escapechar\m@ne
 \@xa\gdef\@xa\code@delim\@xa{\string#}}%
 \@esphack}

(\@xa is \expandafter, see gmutils.)

 \def\Code@Delim#{\VerbHyphen{#}\Code@Delim@St{#}}\Code@Delim

It is an invariant of gmdocing that \code@delim stores the current code delimiter (of
catcode).

The \code@delim should be so a space is not allowed as a code delimiter. I don’t
think it really to be a limitation.

And let’s assume you do as we all do:

 \CodeDelim\%

And to typeset this code delimiter pretty, let’s \def:

 \pdef\narrationmark{{\codett\verbhyphen}{\normalfont\enspace}%\narrationmark
\ignorespaces}

We’ll play with \everypar, a bit, and if you use such things as the {itemize}
environment, an error would occur if we didn’t store the previous value of \everypar
and didn’t restore it at return to the narration. So let’s assign a \toks list to store the
original \everypar:

 \newtoks\gmd@preverypar\gmd@preverypar

 \newcommand⋆\settexcodehangi{%\settexcodehangi
 \hangindent=\verbatimhangindent␣\hangafter=\@ne}% we’ll use it in

the in-line comment case. \verbatimhangindent is provided by the
gmverb package and = em by default.

 \@ifdefinable\@@settexcodehangi{\let\@@settexcodehangi=%
\settexcodehangi}

We’ll play a bitwith\leftskip, so let the user have a parameter instead. For normal
text (i.e. the comment):

 \newlength\TextIndent\TextIndent

I assume it’s originally equal to \leftskip, i.e. \z@. And for the TEX code:

 \newlength\CodeIndent

 \CodeIndent=,em\relax\CodeIndent

And the vertical space to be inserted where there are blank lines in the source code:

 \@ifundefined{stanzaskip}{\newlength\stanzaskip}{}

I use \stanzaskip in gmverse package and derivatives for typesetting poetry.
A computer program code is poetry.

 \stanzaskip=\medskipamount\stanzaskip

A vertical space between the commentary and the code seems to enhance readability
so declare

 \newskip\CodeTopsep
 \newskip\MacroTopsep

And let’s set them. For æsthetic minimality let’s unify them and the other most im-
portant vertical spaces used in gmdoc. I think a macro that gathers all these assignments
may be handy.

 \def\UniformSkips{%\UniformSkips
 \CodeTopsep=\stanzaskip\CodeTopsep
 \MacroTopsep=\stanzaskip\MacroTopsep
 \abovedisplayskip=\stanzaskip
%%␣\abovedisplayshortskip remains untouched as it is . pt plus . pt by default.

 \belowdisplayskip=\stanzaskip
 \belowdisplayshortskip=.\stanzaskip% due to DEK’s idea of making

the short below display skip half of the normal.
 \advance\belowdisplayshortskip␣by\smallskipamount
 \advance\belowdisplayshortskip␣by-\smallskipamount% Weadvance

% \belowdisplayshortskip forth and back to give it the \smallskip¦
% amount’s shrink- and stretchability components.

 \topsep=\stanzaskip
 \partopsep=\z@
 }

We make it the default,

 \UniformSkips

but we allow you to change the benchmark glue i.e., \stanzaskip in the preamble
and still have the other glues set due to it: we launch \UniformSkips again after the
preamble.

 \AtBeginDocument{\UniformSkips}

So, if you don’t want them at all i.e., you don’t want to set other glues due to \stan¦
zaskip, you should use the following declaration. That shall discard the unwanted
setting already placed in the \begin{document} hook.

 \newcommand⋆\NonUniformSkips{\@relaxen\UniformSkips}\NonUniformSkips

Why dowe launch \UniformSkips twice then? The first time is to set all the gmdoc-
specific glues somehow, which allows you to set not all of them, and the second time to
set them due to a possible change of \stanzaskip.

 The terms ‘minimal’ and ‘minimalist’ used in gmdoc are among others inspired by the South Park
cartoon’s episode Mr. Hankey The Christmas (…) in which ‘Philip Glass, a Minimalist New York composer’
appears in a ‘non-denominational non-offensive Christmas play’ ;-) . (Philip Glass composed the music to
the Qatsi trilogy among others).

And let’s define a macro to insert a space for a chunk of documentation, e.g., to mark
the beginning of new macro’s explanation and code.

 \newcommand⋆\chunkskip{%\chunkskip
 \par\addvspace{%
 \glueexpr\MacroTopsep
 \if@codeskipput-\CodeTopsep\fi
 \relax
 }\@codeskipputgtrue}

And, for a smaller part of text,

 \pdef\stanza{%\stanza
 \par\addvspace{%
 \glueexpr\stanzaskip
 \if@codeskipput-\CodeTopsep\fi
 \relax}\@codeskipputgtrue}

Since the stanza skips are inserted automatically most often (cf. lines , ,
, ,), sometimes you may need to forbid them.

 \newcommand⋆\nostanza{%\nostanza
 \par
 \if@codeskipput\unless\if@nostanza\vskip-\CodeTopsep\relax%

\fi\fi
 \@codeskipputgtrue\@nostanzagtrue
 \@afternarrgfalse\@aftercodegtrue}% In the ‘code to narration’ case the

first switch is enough but in the counter-case ‘narration to code’ both the
second and third are necessary while the first is not.

To count the lines where they have begun not before them
 \newgif\if@newline

\newgif is \newif with a global effect i.e., it defines \…gtrue and \…gfalse
switchers that switch respective Boolean switch globally. See gmutils package for details.

To handle the DocStrip directives not any %<….

 \newgif\if@dsdir\if@dsdir

This switch will be falsified at the first char of a code line. (We need a switch inde-
pendent of the one indicating whether the line has or has not been counted because of
two reasons: . line numbering is optional, . counting the line falsifies that switch before
the first char.)

The core

Nowwe definemain \inputing command that’ll change catcodes. The macros used by
it are defined later.

 \begingroup\catcode`\^^M=\active%
 \firstofone{\endgroup%
 \newcommand⋆{\DocInput}[]{\begingroup%\DocInput
 \edef\gmd@inputname{#}% we’ll use it in some notifications.

 \NamedInput@prepare{#}% tomake this input “named”, aswith \Named¦
Input.

 \let\gmd@currentlabel@before=\@currentlabel% we store it because
we’ll do \xdefs of \@currentlabel to make proper references to the

line numbers so we want to restore current \@currentlabel after our
group.

 \gmd@setclubpenalty% we wrapped the assignment of \clubpenalty in
a macro because we’ll repeat it twice more.

 \@clubpenalty\clubpenalty␣\widowpenalty=␣% Most paragraphs
of the codewill be one-linemost probably andmany of the narration, too.

 \tolerance=␣% as in doc.
 \@xa\@makeother\csname\code@delim\endcsname%
 \gmd@resetlinecount% due to the option uresetlinecount we reset the

line number counter or do nothing.
 \QueerEOL% It has to be before the begin-input-hook to allow change by that^^M

hook.
 \@beginputhook% my first use of it is to redefine \maketitle just at this

point not globally.
 \everypar=\@xa{\@xa\@codetonarrskip\the\everypar}%
 \edef\gmd@guardedinput{%\gmd@guardedinput
 \@nx\@@input␣#\relax% \@nx is \noexpand, see gmutils. \@@input is

the true TEX’s \input.
 \gmd@iihook% cf. line
 \@nx\EOFMark% to pretty finish the input, see line .
 \@nx\CodeDelim\@xanxcs{\code@delim}% to ensure the code delim-

iter is the same as at the beginning of input.
 \@nx^^M\code@delim%
 }% we add guardians after \inputing a file; somehow an error occurred with-

out them.
 \catcode`\%=␣% for doc-compatibility.
 \setcounter{CheckSum}{}% we initialise the counter for the number of

the escape chars (the assignment is \global).
 \everyeof{\relax}% \@nx moved not to spoil input of toc e.g.
 \@xa\@xa\@xa^^M\gmd@guardedinput%
 \par%
 \@endinputhook% It’s a hook to let postpone some stuff till the end of input.

We use it e.g. for the doc-(not)likeliness notifications.
 \glet\@currentlabel=\gmd@currentlabel@before% we restore value

from before this group. In a very special case this could cause unexpected
behaviour of cross-refs, but anywaywe acted globally and so acts hyperref.

 \NamedInput@finish% to clean up after a “named” input, as with \Named¦
Input.

 \endgroup%
 }% end of \Doc@Input’s definition.
 }% end of \firstofone’s argument.

So, having the main macro outlined, let’s fill in the details.
First, define the queer EOL.We define amacro that ^^M will be let to. \gmd@textEOL

will be used also for checking the %^^M case (\@ifnextchar does \ifx).

 \pdef\gmd@textEOL{␣% a space just like in normal TEX. Weput it first to cooperate\gmd@textEOL
with \^^M’s \expandafter\ignorespaces. It’s no problem since a space
␣ doesn’t drive TEX out of the vmode.

 \ifhmode\@afternarrgtrue\@codeskipputgfalse\fi% being in the hor-
izontal mode means we’ve just typeset some narration so we turn the re-

spective switches: the one bringing the message ‘we are after narration’ to
True (@afternarr) and the ‘we have put the code-narration glue’ to False
(@codeskipput). Since we are in a verbatim group and the information
should be brought outside it, we switch the switches globally (the letter g in
both).

 \@newlinegtrue% to \refstep the lines’ counter at the proper point.
 \@dsdirgtrue% to handle the DocStrip directives.
 \@xa\@trimandstore\the\everypar\@trimandstore% we store the previ-

ous value of \everypar register to restore it at a proper point. See line
for the details.

 \begingroup%
 \gmd@setclubpenalty% Most paragraphswill be one-linemost probably. Since

some sectioning commands may change \clubpenalty, we set it again
here and also after this group.

 \aftergroup\gmd@setclubpenalty%
 \let\par\@@par% inside the verbatim group we wish \par to be genuine.
 \let\verbatimfont\codett␣%
 \ttverbatim% it applies the code-layer font (\tt by default) andmakes specials

other or \active-and-breakable. to turn verbatim specials off in \scan¦
verb s.

 \gmd@DoTeXCodeSpace%
 \@makeother\|% because \ttverbatim doesn’t do that.
 \MakePrivateLetters% see line .
 \@xa\@makeother\code@delim% we are almost sure the code comment char is

among the chars having been ed already. For ‘almost’ see the \IndexIn¦
put macro’s definition.

So, we’ve opened a verbatim group and want to peek at the next character. If it’s %,
then we just continue narration, else we process the leading spaces supposed there are
any and, if after them is a %, we just continue the commentary as in the previous case or
else we typeset the TEX code.

 \texcode@hook% we add some special stuff, e.g. in gmdocc.clswe make star low.
 \@xa\@ifnextcharRS\@xa{\code@delim}{%
 \gmd@continuenarration}{%
 \gmd@dolspaces% it will launch \gmd@typesettexcode.
 }% end of \@ifnextcharRS’s else.
 }% end of \gmd@textEOL’s definition.
 \emptify\texcode@hook
 \def\gmd@setclubpenalty{\clubpenalty=␣}\gmd@setclubpenalty

For convenient adding things to the begin- and endinput hooks:
 \def\AtEndInput{\g@addto@macro\@endinputhook}\AtEndInput
 \def\@endinputhook{}\@endinputhook

Simili modo
 \def\AtBegInput{\g@addto@macro\@beginputhook}\AtBegInput
 \def\@beginputhook{}\@beginputhook

For the index input hooking now declare a macro, we define it another way at line
.

 \emptify\gmd@iihook
And let’s use it instantly to avoid a disaster while reading in the table of contents.

 \AtBegInput{\let\gmd@@toc\tableofcontents
 \def\tableofcontents{%\tableofcontents
 \@ifQueerEOL
 {\StraightEOL\gmd@@toc\QueerEOL}%
 {\gmd@@toc}%
 }%
 }

As you’ll learn from lines and , we use those two strange declarations to
change and restore the very special meaning of the line end. Without such changes
\tableofcontents would cause a disaster (it did indeed). And to check the catcode
of ^^M is the rôle of \@ifEOLactive:

 \def\@ifEOLactive{%\@ifEOLactive
% # what if end of line is active,
% # what if not.

 \ifnum\catcode`\^^M=\active␣\@xa\@firstoftwo\else\@xa%
\@secondoftwo\fi}

 \foone\obeylines{%
 \def\@ifQueerEOL{%\@ifQueerEOL

% # what if line end is ‘queer’,
% # what if not ‘queer’.

 \@ifEOLactive{%
 \ifx^^M\gmd@textEOL\@xa\@firstoftwo\else\@xa%

\@secondoftwo\fi}%
 {\@secondoftwo}}% of \@ifQueerEOL
 }% of \foone

A footnote for the ‘queer’ line ends scope.
 \pdef\qfootnote{%\qfootnote
 \@ifQueerEOL
 {\begingroup\StraightEOL\qfootnote@}%
 {\footnote}}

 \DeclareCommand\qfootnote@{o>Lm}{%\qfootnote@
 \endgroup␣% yes, we close the group: the arguments are already parsed and

passed to this macro.
 \edef\gmu@tempa{%
 \@nx\footnote␣\IfValueT{#}{[#]}}%
 \gmu@tempa{#}%
 }

An emphasis command for ‘queer’ line ends.
 \pdef\qemph{%\qemph
 \@ifQueerEOL
 {\begingroup\StraightEOL\qemph@}%
 {\emph}}

 \pdef\qemph@#{\endgroup\emph{#}}\qemph@

The declaration below is useful if you wish to put sth. just in the nearest input/included
file and no else: at the moment of putting the stuff it will erase it from the hook. You
may declare several \AtBegInputOnces, they add up.

 \@emptify\gmd@ABIOnce\gmd@ABIOnce
 \AtEndOfPackage{\AtBegInput\gmd@ABIOnce}

 \long\def\AtBegInputOnce#{%\AtBegInputOnce
 \gaddtomacro\gmd@ABIOnce{\g@emptify\gmd@ABIOnce#}}

Many tries of finishing the input cleanly led me to setting the guardians as in line
 and to

 \def\EOFMark{\<eof>}\EOFMark

Other solutions did print the last code delimiter orwould requiremanaging a special
case for the macros typesetting TEX code to suppress the last line’s numbering etc.

If you don’t like it, see line .

Due to the codespacesblank option in the line ?? we launch the macro defined
below to change the meaning of a gmdoc-kernel macro.

 \begin{obeyspaces}%
 \gdef\CodeSpacesVisible{%
 \def\gmd@DoTeXCodeSpace{%\gmd@DoTeXCodeSpace
 \obeyspaces\let␣=\breakablevisspace}}%

 \gdef\CodeSpacesBlank{%\CodeSpacesBlank
 \let\gmd@DoTeXCodeSpace\gmobeyspaces%
 \let\gmd@texcodespace=\␣}% the latter \let is for the \if…s.

 \gdef\CodeSpacesSmall{%\CodeSpacesSmall
 \def\gmd@DoTeXCodeSpace{%\gmd@DoTeXCodeSpace
 \obeyspaces\def␣{\,\hskip\z@}}%
 \def\gmd@texcodespace{\,\hskip\z@}}%\gmd@texcodespace

 \end{obeyspaces}

 \def\CodeSpacesGrey{%\CodeSpacesGrey
 \CodeSpacesVisible
 \VisSpacesGrey% defined in gmverb
 }%

Note that \CodeSpacesVisible doesn’t revert \CodeSpacesGrey.

 \CodeSpacesVisible

How the continuing of the narration should look like?

 \def\gmd@continuenarration{%\gmd@continuenarration
 \endgroup
 \gmd@cpnarrline% see below.
 \@xa\@trimandstore\the\everypar\@trimandstore
 \everypar=\@xa{\@xa\@codetonarrskip\the\everypar}%
 \@xa\gmd@checkifEOL\@gobble}

Simple, isn’t it? (We gobble the ‘other’ code delimiter. Despite of \egroup it’s
because it was touched by \futurelet contained in \@ifnextcharRS in line .
And in line it’s been read as . That’s why it works in spite of that % is of category
‘ignored’.)

 \if@countalllines

If the countalllines option is in force, we get the count of lines from the \in¦
putlineno primitive. But if the option is countalllines⋆, we want to print the line
number.

 \def\gmd@countnarrline@{%\gmd@countnarrline@

 \gmd@grefstep{codelinenum}\@newlinegfalse
 \everypar=\@xa{%
 \@xa\@codetonarrskip\the\gmd@preverypar}% the \hyperlab¦

% el@line macro puts a hypertarget in a \raise i.e., drives TEX
into the horizontal mode so \everypar shall be issued. Therefore
we should restore it.

 }% of \gmd@countnarrline@

 \def\gmd@grefstep#{% instead of diligent redefining all possible com-\gmd@grefstep
mands and environments we just assign the current value of the respec-
tive TEX’s primitive to the codelinenum counter. Note we decrease it by
− to get the proper value for the next line. (Well, I don’t quite knowwhy,
but it works.)

 \ifnum\value{#}<\inputlineno
 \csname␣c@#\endcsname\numexpr\inputlineno-\relax
 \ifvmode\leavevmode\fi% this line is added // after an all-

night debuggery ;-) that showed that at one point \gmd@grefstep
was called in vmode which caused adding \penalty to
the main vertical list and thus forbidding page break during entire
% oldmc.

 \grefstepcounter{#}%
 \fi}% We wrap stepping the counter in an \ifnum to avoid repetition of

the same ref-value (what would result in the “multiply defined labels”
warning).

The \grefstepcounter macro, defined in gmverb, is a global version of \ref¦
stepcounter, observing the redefinition made to \refstepcounter by hyperref.

 \if@printalllinenos% Note that checking this switch makes only sense
when countalllines is true.

 \def\gmd@cpnarrline{% count and print narration line\gmd@cpnarrline
 \if@newline
 \gmd@countnarrline@
 \hyperlabel@line
 {\LineNumFont\thecodelinenum}\,\ignorespaces}%
 \fi}
 \else% not printalllinenos
 \emptify\gmd@cpnarrline
 \fi

 \def\gmd@ctallsetup{% In the oldmc environments and with the \FileInfo\gmd@ctallsetup
declaration (when countalllines option is in force) the code is gob-
bled as an argument of a macro and then processed at one place (at
the end of oldmc e.g.) so if we used \inputlineno, we would have
got all the lines with the same number. But we only set the counter
not \refstep it to avoid putting a hypertarget.

 \setcounter{codelinenum}{\inputlineno}% it’s global.
 \let\gmd@grefstep\hgrefstepcounter}

 \else% not countalllines (and therefore we won’t print the narration lines’
numbers either)

 \@emptify\gmd@cpnarrline
 \let\gmd@grefstep\hgrefstepcounter% if we don’t want to count all the

lines, we only \ref-increase the counter in the code layer.
 \emptify\gmd@ctallsetup

 \fi% of \if@countalllines

 \def\skiplines{\bgroup\skiplines
 \let\do\@makeother␣\dospecials␣% not \@sanitize because the latter

doesn’t recatcode braces and we want all to be quieten.
 \gmd@skiplines}

 \edef\gmu@tempa{%
 \long\def\@nx\gmd@skiplines##\bslash␣endskiplines{%

\egroup}}
 \gmu@tempa

And typesetting the TEX code?

 \foone\obeylines{%
 \def\gmd@typesettexcode{%\gmd@typesettexcode
 \gmd@parfixclosingspace% it’s to eat a space closing the paragraph, see

below. It contains \par.

A verbatim group has already been opened by \ttverbatim and additional \cat¦
code.

 \everypar={\@@settexcodehangi}% At first attemptwe thought of giving
the user a \toks list to insert at the beginning of every code line, butwhat
for?

 \def^^M{% TEX code EOL^^M
 \@newlinegtrue% to \refstep the counter in proper place.\@newlinegtrue
 \@dsdirgtrue% to handle the DocStrip directives.
 \global\gmd@closingspacewd=\z@% wedon’twish to eat a closing space

after a codeline, because there isn’t any and a negative rigid \hskip
added to \parfillskip would produce a blank line.

 \ifhmode\par\@codeskipputgfalse\else%
 \if@codeskipput%
 \else\addvspace{\stanzaskip}\@codeskipputgtrue%
 \fi% if we’ve just met a blank (code) line, we insert a \stanzaskip glue.

 \fi%
 \prevhmodegfalse% wewant to know later that nowwe are in the vmode.
 \@ifnextcharRS{\gmd@texcodespace}{%
 \@dsdirgfalse\gmd@dolspaces}{\gmd@charbychar}%
 }% end of ^^M’s definition.
 \let\gmd@texcodeEOL=^^M% for further checks inside \gmd@charbychar.
 \raggedright\leftskip=\CodeIndent%
 \if@aftercode%
 \gmd@nocodeskip{iaC}%
 \else%
 \if@afternarr%
 \if@codeskipput\else%
 \gmd@codeskip\@aftercodegfalse%
 \fi%
 \else\gmd@nocodeskip{naN}%
 \fi%
 \fi% if now we are switching from the narration into the code, we insert

a proper vertical space.
 \@aftercodegtrue\@afternarrgfalse%
 \ifdim\gmd@ldspaceswd>\z@% and here the leading spaces.

 \leavevmode\@dsdirgfalse%
 \if@newline\gmd@grefstep{codelinenum}\@newlinegfalse%
 \fi%
 \printlinenumber% if we don’t want the lines to be numbered, the re-

spective option \lets this CS to \relax.
 \hyperlabel@line%
 \mark@envir% index and/or marginize an environment if there is some to

be done so, see line .
 \hskip\gmd@ldspaceswd%
 \advance\hangindent␣by\gmd@ldspaceswd%
 \xdef\settexcodehangi{%
 \@nx\hangindent=\the\hangindent% and also set the hanging in-

dent setting for the same line comment case. BTW., this % or rather
lack of it costed me five hours of debugging and rewriting. Active
line ends require extreme caution.

 \@nx\hangafter=\space}%
 \else%
 \glet\settexcodehangi=\@@settexcodehangi%

% \printlinenumber here produced line numbers for blank lines
which is what we don’t want.

 \fi% of \ifdim
 \gmd@ldspaceswd=\z@%
 \prevhmodegfalse% we have done \par so we are not in the hmode.
 \@aftercodegtrue% we want to know later that now we are typesetting

a codeline.
 \if@ilgroup\aftergroup\egroup\@ilgroupfalse\fi% whenwe are in

the in-line comment group (for ragged right or justified), wewant to close
it. But if we did it here, we would close the verbatim group for the code.
But we set the switch false not to repeat \aftergroup\egroup.

 \gmd@charbychar% we’ll eat the code char by char to scan all the macros and
thus to deal properly with the case \% in which the % will be scanned and
won’t launch closing of the verbatim group.

 }% of \gmd@typesettexcode.
 }% of \foone\obeylines.

Now let’s deal with the leading spaces once forever. We wish not to typeset ␣s but
to add the width of every leading space to the paragraph’s indent and to the hanging
indent, but only if there’ll be any code character not being % in this line (e.g., the end of
line). If there’ll be only %, we want just to continue the comment or start a new one. (We
don’t have to worry about whether we should \par or not.)

 \newlength\gmd@spacewd% to store the width of a (leading) ␣.\gmd@spacewd
 \newlength\gmd@ldspaceswd% to store total length of gobbled leading spaces.\gmd@ldspaceswd

It costed me some time to reach that in my verbatim scope a space isn’t but ,
namely \let to \breakablevisspace. So let us \let for future:

 \let\gmd@texcodespace=\breakablevisspace\gmd@texcodespace

And now let’s try to deal with those spaces.

 \def\gmd@dolspaces{%\gmd@dolspaces
 \ifx\gmd@texcodespace\@let@token
 \@dsdirgfalse
 \afterfi{\settowidth{\gmd@spacewd}{\visiblespace}%
 \gmd@ldspaceswd=\z@

 \gmd@eatlspace}%
 \else\afterfi{% about this smart macro and other of its family see gmutils

sec. .
 \if@afternarr\if@aftercode
 \ifilrr\bgroup␣\gmd@setilrr\fi
 \fi\fi
 \par% possibly after narration
 \if@afternarr\if@aftercode
 \ifilrr\egroup\fi
 \fi\fi
 \gmd@typesettexcode}%
 \fi}

And now, the iterating inner macro that’ll eat the leading spaces.

 \def\gmd@eatlspace#{%\gmd@eatlspace
 \ifx\gmd@texcodespace#%
 \advance\gmd@ldspaceswd␣by\gmd@spacewd% we don’t \advance

it \globally because the current group may be closed iff we meet % and
then we’ll won’t indent the line anyway.

 \afteriffifi\gmd@eatlspace
 \else
 \if\code@delim\@nx#%
 \gmd@ldspaceswd=\z@
 \afterfifi{\gmd@continuenarration\narrationmark}%
 \else␣\afterfifi{\gmd@typesettexcode#}%
 \fi
 \fi}%

Wewant to knowwhether we were in hmode before reading current \code@delim.
We’ll need to switch the switch globally.

 \newgif\ifprevhmode

And the main iterating inner macro which eats every single char of verbatim text to
check the end. The case \% should be excluded and it is indeed.

 \def\gmd@charbychar#{%\gmd@charbychar
 \ifhmode\prevhmodegtrue
 \else\prevhmodegfalse
 \fi
 \if\code@delim\@nx#%
 \def\next{% occurs when next a \hskip.pt is to be put
 \gmd@percenthack% to typeset % if a comment continues the codeline.
 \endgroup%
 \gmd@checkifEOLmixd}% to see if next is ^^M and then do \par.
 \else% i.e., we’ve not met the code delimiter
 \ifx\relax#\def\next{%
 \endgroup}% special case of end of file thanks to \everyeof.
 \else
 \if\code@escape@char\@nx#%
 \@dsdirgfalse% yes, just here not before the whole \if because then

we would discard checking for DocStrip directives doable by the
active % at the ‘old macrocode’ setting.

 \def\next{%
 \gmd@counttheline#\scan@macro}%

 \else
 \def\next{%
 \gmd@EOLorcharbychar#}%
 \fi
 \fi
 \fi\next}

 \def\debug@special#{%\debug@special
 \ifhmode\special{color␣push␣gray␣.#}%
 \else\special{color␣push␣gray␣.#}\fi}

One more inner macro because ^^M in TEX code wants to peek at the next char and
possibly launch \gmd@charbychar. We deal with counting the lines thoroughly. In-
creasing the counter is divided into cases and it’s very low level in one case because
\refstepcounter and \stepcounter added some stuff that caused blank lines, at
least with hyperref package loaded.

 \def\gmd@EOLorcharbychar#{%\gmd@EOLorcharbychar
 \ifx\gmd@texcodeEOL#%
 \if@newline
 \@newlinegfalse
 \fi
 \afterfi{#}% here we print #.
 \else% i.e., # is not a (very active) line end,
 \afterfi
 {%
 \gmd@counttheline#\gmd@charbychar}% or hereweprint#. Herewewould

also possibly mark an environment but there’s no need of it because declaring
an environment to be marked requires a bit of commentary and here we are
after a code ^^M with no commentary.

 \fi}

 \def\gmd@counttheline{%\gmd@counttheline
 \ifvmode
 \if@newline
 \leavevmode
 \gmd@grefstep{codelinenum}\@newlinegfalse
 \hyperlabel@line
 \fi
 \printlinenumber
 \mark@envir
 \else% not vmode
 \if@newline
 \gmd@grefstep{codelinenum}\@newlinegfalse
 \hyperlabel@line
 \fi
 \fi}

If before reading current % char we were in horizontal mode, then we wish to print
% (or another code delimiter).

 \def\gmd@percenthack{%\gmd@percenthack
 \ifprevhmode\aftergroup\narrationmark% We add a space after %, be-

cause I think it looks better. It’s done \aftergroup to make the spaces
possible after the % not to be typeset.

 \else\aftergroup\gmd@dsNarrChecker% remember that \gmd@precent¦
hack is only called when we’ve the code delimiter and soon we’ll close the
verbatimgroup and right after\endgroup therewaits\gmd@checkifEOLmixd.

 \fi}

We want to handle the case of the verbatim mode’s closing directive, which may by
merely any text from % to the end of line.

 \newif\ifgmd@dsVerb\ifgmd@dsVerb

the informer whether we should look at such a closing at all (hope it will speed up
parsing)

 \foone{\obeylines}%
 {%
 \def\gmd@dsVerbChecker%\gmd@dsVerbChecker
 #% stuff for checking normal directive
 #% line contents
 ^^M{%
 \typeout{verb␣checker␣l.\the\inputlineno}%
 \ifnum\strcmp{\detokenize{#}}{\gmd@dsVerbDelim}=\z@%
 \global\gmd@dsVerbfalse%
 \def\gmd@modulehashone{%\gmd@modulehashone
 \ModuleVerbClose{\gmd@dsVerbDelim}%
 \global\emptify\gmd@dsVerbDelim%
 \@afternarrgfalse\@aftercodegtrue%
 \@codeskipputgfalse␣%
 }%
 \@xa\@firstoftwo%
 \else␣\@xa\@secondoftwo␣%
 \fi%
 {\gmd@textEOL\gmd@modulehashone^^M}%
 {\begingroup%
 \endlinechar=\m@ne␣%
 \@XA{%
 \endgroup#}\scantokens{#}^^M% note that \scantokens adds

char \endlinechar which we assure to be ^^M
 }%
 }% of \gmd@dsVerbChecker
 }% of \obeylines

 \def\gmd@dsChecker#{%\gmd@dsChecker
 \@dsdirgfalse
 \ifgmd@dsVerb
 \@xa\@firstofone
 \else
 \@xa\@secondoftwo
 \fi
 {\gmd@dsVerbChecker}%
 {#}%
 }% of \gmd@dsChecker

 \def\gmd@dsNarrChecker#{%\gmd@dsNarrChecker
 \gmd@dsChecker
 {\@ifnextcharRS<{%
 \@xa\gmd@docstripdirective\@gobble}{#}}%

 }% of \gmd@dsNarrChecker

The macro below is used to look for the %^^M case to make a commented blank line
make a new paragraph. Long searched and very simple at last.

 \def\gmd@checkifEOL{%\gmd@checkifEOL
 \gmd@cpnarrline
 \everypar=\@xa{\@xa\@codetonarrskip% we add the macro that’ll insert

a vertical space if we leave the code and enter the narration.
 \the\gmd@preverypar}%
 \@ifnextcharRS{\gmd@textEOL}{%
 \@dsdirgfalse
 \par\ignorespaces}{%
 \gmd@narrcheckifds}}%

We check if it’s %<, a DocStrip directive that is.

 \def\gmd@narrcheckifds{%\gmd@narrcheckifds
 \gmd@dsNarrChecker{\ignorespaces}}

In the ‘mixed’ line case it should be a bit more complex, though. On the other hand,
there’s no need to checking for DocStrip directives.

 \def\gmd@checkifEOLmixd{%\gmd@checkifEOLmixd
 \gmd@cpnarrline
 \everypar=\@xa{\@xa\@codetonarrskip\the\gmd@preverypar}%
 \@afternarrgfalse\@aftercodegtrue
 \ifhmode\@codeskipputgfalse\fi
 \@ifnextcharRS{\gmd@textEOL}{%
 {\raggedright\gmd@endpe\par}% without \raggedright this \parwould

be justified which is not appropriate for a long codeline that should be
broken, e.g., .

 \prevhmodegfalse
 \gmd@endpe\ignorespaces}{%

If a codeline ends with % (prevhmode == True) first \gmd@endpe sets the param-
eters at the TEX code values and \par closes a paragraph and the latter \gmd@endpe
sets the parameters at the narration values. In the other case both \gmd@endpes do the
same and \par between them does nothing.

 \def\par{% the narration \par.\par
 \ifhmode% (I added this \ifhmode as a result of a heavy debug.)
 \if@afternarr\if@aftercode
 \unless\if@ilgroup\bgroup\@ilgrouptrue\fi
 \ifilrr\gmd@setilrr\fi
 \fi\fi
 \@@par
 \if@afternarr
 \if@aftercode
 \if@ilgroup\egroup\fi% if we are both after code and after narra-

tion it means we are after an in-line comment. Then we probably
end a group opened in line

 \if@codeskipput\else\gmd@codeskip%
\@aftercodegfalse\fi

 \else\gmd@nocodeskip{naC}%
 \fi
 \else\gmd@nocodeskip{naN}%

 \fi
 \prevhmodegfalse\gmd@endpe% when taken out of \ifhmode, this

line caused some codeline numberswere typesetwith\leftskip =
.

 \everypar=\@xa{%
 \@xa\@codetonarrskip\the\gmd@preverypar}%
 \let\par\@@par%
 \fi}% of \par.
 \gmd@endpe\ignorespaces}}

Aswe announced, we playwith \leftskip inside the verbatim group and therefore
we wish to restore normal \leftskip when back to normal text i.e. the commentary.
But, if normal text starts in the same line as the code, then we still wish to indent such
a line.

 \def\gmd@endpe{%\gmd@endpe
 \ifprevhmode
 \settexcodehangi% ndent
 \leftskip=\CodeIndent
 \else
 \leftskip=\TextIndent
 \hangindent=\z@
 \everypar=\@xa{%
 \@xa\@codetonarrskip\the\gmd@preverypar}%
 \fi}

Now a special treatment for an in-line comment:

 \newif\ifilrr\ifilrr

 \def\ilrr{%\ilrr
 \if@aftercode
 \unless\if@ilgroup\bgroup\@ilgrouptrue\fi% If we are ‘aftercode’,

then we are in an in-line comment. Then we open a group to be able to
declare e.g. \raggedright for that comment only. This group is closed
in line or .

 \ilrrtrue
 \fi}

 \newif\if@ilgroup\if@ilgroup

 \def\gmd@setilrr{\rightskipptplus\textwidth}\gmd@setilrr

 \def\ilju{% when in-line comments are ragged right in general but we want just\ilju
this one to be justified.

 \if@aftercode
 \unless\if@ilgroup\bgroup\@ilgrouptrue\fi
 \ilrrfalse
 \fi}

 \def\verbcodecorr{% a correction of vertical spaces between a verbatim and\verbcodecorr
code. We put also a \par to allow parindent in the next commentary.

 \vskip-\lastskip\vskip-\CodeTopsep\vskip\CodeTopsep\par}

Numbering (or not) of the lines

Maybe you want codelines to be numbered and maybe you want to reset the counter
within sections.

 \if@uresetlinecount% with uresetlinecount option…
 \@relaxen\gmd@resetlinecount% …we turn resetting the counter by \Doc¦

% Input off…
 \newcommand⋆\resetlinecountwith[]{%\resetlinecountwith
 \newcounter{codelinenum}[#]}% … and provide a new declaration ofcodelinenum

the counter.
 \else% With the option turned off…
 \newcounter{DocInputsCount}%DocInputsCount
 \newcounter{codelinenum}[DocInputsCount]% …wedeclare the\DocIn¦codelinenum

puts’ number counter and the codeline counter to be reset with stepping of
it.

 \newcommand⋆\gmd@resetlinecount{\stepcounter{DocInputsCount}}% …\gmd@resetlinecount
and let the \DocInput increment the \DocInputs number count and thus
reset the codeline count. It’s for unique naming of the hyperref labels.

 \fi

Let’s define printing the line number as we did in gmvb package.

 \newcommand⋆\printlinenumber{%\printlinenumber
 \leavevmode\llap{\rlap{\LineNumFont\llap{%

\thecodelinenum}}%
 \hskip\leftskip}}

 \def\LineNumFont{\normalfont\tiny}\LineNumFont

 \if@linesnotnum\@relaxen\printlinenumber\fi

 \newcommand⋆\hyperlabel@line{%\hyperlabel@line
 \if@pageindex% It’s good to be able to switch it any time not just define it once

according to the value of the switch set by the option.
 \else
 \raisebox{ex}[ex][\z@]{\gmhypertarget[clnum.%
 \HLPrefix\arabic{codelinenum}]{}}%
 \fi}

Spacing with \everypar
Last but not least, let’s define the macro inserting a vertical space between the code and
the narration. Its parameter is a relic of a very heavy debug of the automatic vspacing
mechanism. Let it remain at least until this package is . version.

 \newcommand⋆\gmd@codeskip[]{%\gmd@codeskip
 \@@par\addvspace\CodeTopsep
 \@codeskipputgtrue\@nostanzagfalse}

Sometimes we add the \CodeTopsep vertical space in \everypar. When this hap-
pens, first we remove the \parindent empty box, but this doesn’t reverse putting
\parskip to the main vertical list. And if \parskip is put, \addvspace shall see
it not the ‘true’ last skip. Therefore we need a Boolean switch to keep the knowledge of@codeskipput
putting similar vskip before \parskip.

 \newgif\if@codeskipput\if@codeskipput

A switch to control \nostanzas:
 \newgif\if@nostanza

The below is another relic of the heavy debug of the automatic vspacing. Let’s give
it the same removal clause as above.

 \newcommand⋆\gmd@nocodeskip[]{}\gmd@nocodeskip

And here is how the two relic macros looked like during the debug. As you see, they
are disabled by a false \if (look at it closely ;-).

 \if␣
 \renewcommand⋆\gmd@codeskip[]{%\gmd@codeskip
 \hbox{\rule{cm}{pt}␣#!!!}}
 \renewcommand⋆\gmd@nocodeskip[]{%\gmd@nocodeskip
 \hbox{\rule{cm}{.pt}␣#:␣#␣}}
 \fi

We’ll wish to execute \gmd@codeskip wherever a codeline (possibly with an in-
line comment) is followed by a homogeneous comment line or reverse. Let us dedicate
a Boolean switch to this then.

 \newgif\if@aftercode\if@aftercode

This switch will be set true in the moments when we are able to switch from the TEX
code into the narration and the below one when we are able to switch reversely.

 \newgif\if@afternarr\if@afternarr

To insert vertical glue between the TEX code and the narration we’ll be playing with
\everypar. More precisely, we’ll add a macro that the \parindent box shall move
and the glue shall put.

 \def\@codetonarrskip{%\@codetonarrskip
 \if@codeskipput\else
 \if@afternarr\gmd@nocodeskip{iaN}\else
 \if@aftercode

We are at the beginning of \everypar, i.e., TEX has just entered the hmode and put
the \parindent box. Let’s remove it then.

 {\setbox=\lastbox}%

Now we can put the vertical space and state we are not ‘aftercode’.

 \gmd@codeskip%
 \else\gmd@nocodeskip{naC}%
 \fi
 \fi
 \fi
 \leftskip\TextIndent% this line is a patch against a bug-or-feature that in

certain cases the narration \leftskip is left equal the code leftskip. (It
happens when there are subsequent code lines after an in-line comment not
ended with an explicit \par.) Before v.n it was just after line .

 \@aftercodegfalse\@nostanzagtrue
 }

But we play with \everypar for other reasons too, and while restoring it, we don’t
want to add the \@codetonarrskip macro infinitely many times. So let us define
a macro that’ll check if \everypar begins with \@codetonarrskip and trim it if so.
We’ll use this macro with proper \expandaftering in order to give it the contents
of \everypar. The work should be done in two steps first of which will be checking
whether \everypar is nonempty (we can’t have two delimited parameters for a macro:
if we define a two-parameter macro, the first is undelimited so it has to be nonempty; it
costed me some one hour to understand it).

 \long\def\@trimandstore#\@trimandstore{%\@trimandstore
 \def\@trimandstore@hash{#}%\@trimandstore@hash
 \ifx\@trimandstore@hash\@empty% we check if # is nonempty. The \if%

% \relax#\relax trick is not recommended here because using it we
couldn’t avoid expanding # if it’d be expandable.

 \gmd@preverypar={}%
 \else
 \afterfi{\@xa\@trimandstore@ne\the\everypar%

\@trimandstore}%
 \fi}

 \long\def\@trimandstore@ne##\@trimandstore{%\@trimandstore@ne
 \def\trimmed@everypar{#}%\trimmed@everypar
 \ifx\@codetonarrskip#%
 \gmd@preverypar=\@xa{\trimmed@everypar}%
 \else
 \gmd@preverypar=\@xa{\the\everypar}%
 \fi}

We prefer not to repeat # and # within the \ifs and we even define an auxiliary
macro because \everypar may contain some \ifs or \fis.

Life among queer EOLs

When I showed this package tomyTEXGuru he commended it and immediately pointed
some disadvantages in the comparison with the doc package.

One of themwas an expected difficulty of breaking amoving argument (e.g., of a sec-
tioning macro) in two lines. To work it around let’s define a line-end eater:

 \catcode`\^^B=\active% note we re\catcode 〈char〉 globally, for the entire
document.

 \catcode`\^^V=\active␣% the same for ^^V.
 \catcode`\^^U=\active␣% and for ^^U.
 \foone{\obeylines}%
 {\pdef\QueerCharTwo{%^^B

\QueerCharTwo \protected\def^^B##^^M{%
 \ifhmode\unskip\space\ignorespaces\fi}}% It shouldn’t be \ not

to drive TEX into hmode.

The ^^V char is intended to mark parts of code commented out which are to be type-
set verbatim. Lines are begun with narration marks (%’s by default) and the narration-
verbatim-typewriter font is used.

The ^^U char is intended for the lines commented out which are to be typeset as
almost-invisible (second-class). They are marked with the narration mark as with ^^V
and a special font setting is used, which is a gray colour by default (in addition to the
narration-verbatim-typewriter).

 \pdef\gmd@UVdefs␣{%^^V
^^U

\gmd@UVdefs
 \def\gmd@UV@percent{\global\let\verb@balance@group\@empty␣

\gmd@UV@percent
␣%

%% \hyphenchar\font=\gmv@storedhyphenchar % it works back for the
current paragraph so destroys our special hyphenchar.

 \egroup\endgroup␣%
 }% of \gmd@UV@percent

 \@xa\def\@xa\verb@egroup@UV\@xa{%
 \gmd@UV@percent␣^^M%
 }% of \verb@egroup@UV.
 \addtomacro\gmd@UV@percent{\narrationmark}%
 \pdef\gmd@QueerUV␣##{%\gmd@QueerUV
 \scantokens\@xa{\code@delim␣%
 \fooatletter{\@ifQueerEOL\@gobble}{}%
 }% of \scantokens
 \par%
 {\codett\verbhyphen}\narrationmark␣%
 \begingroup␣%
 \catcode`\^^M=\active␣%
 \let\verb@egroup=\verb@egroup@UV␣%
 \verb^^M%
 ##% nothing in ^^V case and a gray setting in the ^^U case.
 \begingroup␣%
 \@xa\lccode\@xa`\@xa~\@xa`\code@delim%
 \lowercase{\endgroup\let~\gmd@UV@percent␣}%
 \@xa\catcode\@xa`\code@delim\active␣%
 }% of \gmd@QueerUV
 }% of \gmd@UVdefs
 \pdef\QueerU␣{%\QueerU
 \unless\ifdefined\gmd@QueerU%
 \gmd@UVdefs␣%
 \pdef\gmd@QueerU␣{\gmd@QueerUV␣{\QueerUFont␣}}%\gmd@QueerU
 \let^^U\gmd@QueerU%
 \catcode`\^^U=\active%
 \fi␣%
 }% of \QueerU
 \pdef\QueerV␣{%\QueerV
 \unless\ifdefined\gmd@QueerV␣%
 \gmd@UVdefs␣%
 \pdef\gmd@QueerV␣{\gmd@QueerUV␣{}}%\gmd@QueerV
 \let^^V\gmd@QueerV%
 \catcode`\^^V=\active%
 \fi␣%
 }% of \QueerV
 }% of \foone
 \QueerCharTwo
 \QueerV
 \QueerU
 \def\QueerUFont{\color{black!}}\QueerUFont
 \AtBegInput{\@ifEOLactive{\catcode`\^^B\active}{}\QueerCharTwo}%

We repeat redefinition of 〈char〉 at begin of the documenting input, because
doc.dtx suggests that some packages (namely inputenc) may re\catcode such
unusual characters.

As you see the ^^B active char is defined to gobble everything since itself till the end
of line and the very end of line. This is intended for harmless continuing a line. The
price is affecting the line numbering when countalllines option is enabled.

I also liked the doc’s idea of comment i.e., the possibility of marking some text so
that it doesn’t appear nor in the working version neither in the documentation, got by
making ^^A (i.e., 〈char〉) a comment char.

However, in this package such a trick would work another way: here the line ends
are active, a comment char would disable them and that would cause disasters. So let’s
do it an \active way.

 \catcode`\^^A=\active% note we re\catcode 〈char〉 globally, for the entire
document.

 \foone\obeylines{%
 \def\QueerCharOne{%^^A

\QueerCharOne \def^^A{%
 \bgroup\let\do\@makeother\dospecials\gmd@gobbleuntilM}}%
 \def\gmd@gobbleuntilM#^^M{\egroup\ignorespaces^^M}%\gmd@gobbleuntilM
 }
 \QueerCharOne
 \AtBegInput{\@ifEOLactive{\catcode`\^^A%

\active}\QueerCharOne}% see note after line
.

As I suggested in the users’ guide, \StraightEOL and \QueerEOL are intended to
cooperate in harmony for the user’s good. They take care not only of redefining the line
end but also these little things related to it.

One usefulness of \StraightEOL is allowing line-breaking of the command argu-
ments. Another—making possible executing some code lines during the documentation
pass.

 \def\StraightEOL{%\StraightEOL
 \catcode`\^^M=
 \catcode`\^^A=
 \catcode`\^^B=
 \def\^^M{\␣}}
 \foone\obeylines{%
 \def\QueerEOL{%\QueerEOL
 \catcode`\^^M=\active%
 \let^^M\gmd@textEOL%
 \catcode`\^^A=\active%
 \catcode`\^^B=\active% I only re\catcode 〈char〉 and 〈char〉 hoping

no one but me is that perverse to make them \active and (re)define.
(Let me know if I’m wrong at this point.)

 \let\^^M=\gmd@bslashEOL}%
 }

To make ^^M behave more like a ‘normal’ line end I command it to add a ␣ at
first. It works but has one unwelcome feature: if the line has nearly \textwidth, this
closing space may cause line breaking and setting a blank line. To fix this I \advance
the \parfillskip:

 \def\gmd@parfixclosingspace{{%\gmd@parfixclosingspace
 \advance\parfillskip␣by-\gmd@closingspacewd
 \if@aftercode\ifilrr␣\gmd@setilrr␣\fi\fi
 \par}%
 \if@ilgroup\aftergroup\egroup\@ilgroupfalse\fi% we are in the ver-

batim group so we close the in-line comment group after it if the closing is
not yet set.

 }

We’ll put it in a group surrounding \par but we need to check if this \par is ex-
ecuted after narration or after the code, i.e., whether the closing space was added or
not.

 \newskip\gmd@closingspacewd\gmd@closingspacewd
 \newcommand⋆\gmd@setclosingspacewd{%\gmd@setclosingspacewd
 \global\gmd@closingspacewd=\fontdimen\font%
 plus\fontdimen\font␣minus\fontdimen\font\relax}

See also line to see what we do in the codeline case when no closing space is
added.

And one more detail:

 \foone\obeylines{%
 \if␣␣%
 \protected\def\gmd@bslashEOL{\␣\@xa\ignorespaces^^M}%\gmd@bslashEOL
 }% of \foone. Note we interlace here \if with a group.
 \else%
 \protected\def\gmd@bslashEOL{%\gmd@bslashEOL
 \ifhmode\unskip\fi\␣\ignorespaces}
 \fi

The \QueerEOL declaration will \let it to \^^M to make \^^M behave properly.
If this definition was omitted, \^^M would just expand to \␣ and thus not gobble the
leading % of the next line leave alone typesetting the TEX code. I type \␣ etc. instead of
just ^^M which adds a space itself because I take account of a possibility of redefining
the \␣ CS by the user, just like in normal TEX.

We’ll need it for restoring queer definitions for doc-compatibility.

Adjustments of verbatim and \verb
To make verbatim[⋆] typeset its contents with the TEX code’s indentation:

 \gaddtomacro\@verbatim{\leftskip=\CodeIndent}\@verbatim

And a one more little definition to accommodate \verb and pals for the lines com-
mented out.

 \AtBegInput{\long\def\check@percent#{%\check@percent
 \gmd@cpnarrline% to count the verbatim lines and possibly print their num-

bers. This macro is used only by the verbatim end of line.
 \@xa\ifx\code@delim#\else\afterfi{#}\fi}}

We also redefine gmverb’s \AddtoPrivateOthers that has been provided just with
gmdoc’s need in mind.

 \def\AddtoPrivateOthers#{%\AddtoPrivateOthers
 \@xa\def\@xa\doprivateothers\@xa{%
 \doprivateothers\do#}}%

We also redefine an internal \verb’s macro \gm@verb@eol to put a proper line end
if a line end char is met in a short verbatim: we have to check if we are in ‘queer’ or
‘straight’ EOLs area.

 \begingroup
 \obeylines%

 \AtBegInput{\def\gm@verb@eol{\obeylines%\gm@verb@eol
 \def^^M{\verb@egroup\@latex@error{%\verb@egroup
 \@nx\verb␣ended␣by␣end␣of␣line}%
 \@ifEOLactive{^^M}{\@ehc}}}}%
 \endgroup

To distinguish the code typewriter from the narrative typewriter:
(//, v.:) due to troubles with bad fontification in the narration layer I

implement the counterpart to \narrativett: \codett, which is \tt by default so it
even may be transparent to the users.

 \def\verbatimfont{\narrativett}\verbatimfont
 \def\codett{\tt}\codett

 \pdef\texttt#{{\narrativett#}}\texttt

To rescan the verbatim’s contents and show its effect, the gmverb package provides a
modifier of the inner macros to make them throw the verbatim contents as a contents of
a macro. Let’s do that.

 \VerbatimPitch

 \def\ResultsIn{results␣in:}\ResultsIn

 \DeclareEnvironment{verbatim@p}{}
 {\begingroup
 \verbatim
 }
 {\endverbatim
 \endgroup
 \ResultsIn
 \[\parbox{,\textwidth}{%
 \newlinechar=\endlinechar
 \StraightEOL
 \scantokens\@xa{\VerbatimContents}%
 }% of parbox
 \]%
 }

(Note that gmverb provides a reverse: macro that first executes its

Macros for marking of the macros

A great inspiration for this part was the doc package again. I take some macros from it,
and some tasks I solve a different way, e.g., the \ (or another escape char) is not active,
because anyway all the chars of code are scanned one by one. And exclusions from
indexing are supported not with a list stored as \toks register but with separate control
sequences for each excluded CS.

The doc package shows a very general approach to the indexing issue. It assumes us-
ing a special MakeIndex style and doesn’t use explicit MakeIndex controls but provides
specific macros to hide them. But here in gmdoc we prefer no special style for the index.

 \edef\actualchar{\string␣@}\actualchar
 \edef\quotechar{\string␣"}\quotechar
 \edef\encapchar{\xiiclub}\encapchar
 \edef\levelchar{\string␣!}\levelchar

However, for the glossary, i.e., the change history, a special style is required, e.g., gm-
glo.ist, and the above macros are redefined by the \changes command due to gmglo.ist
and gglo.ist settings.

Moreover, if you insist on using a special MakeIndex style, you may redefine the
above fourmacros in the preamble. The\edefs that process them further are postponed
till \begin{document}.

 \def\CodeEscapeChar#{%\CodeEscapeChar
 \begingroup
 \escapechar\m@ne
 \xdef\code@escape@char{\string#}%\code@escape@char
 \endgroup}

As you see, to make a proper use of this macro you should give it a \〈one char〉
CS as an argument. It’s an invariant assertion that \code@escape@char stores ‘other’
version of the code layer escape char.

 \CodeEscapeChar\\

As mentioned in doc, someone may have some chars ed.

 \@ifundefined{MakePrivateLetters}{%
 \def\MakePrivateLetters{\makeatletter\catcode`\⋆=␣}}{}\MakePrivateLetters

A tradition seems to exist to write about e.g., ‘command \section and command
\section⋆’ and such an understanding also of ‘macro’ is noticeable in doc. Making the
⋆ a letter solves the problem of scanning starred commands.

And you may wish some special chars to be .

 \def\MakePrivateOthers{\let\do=\@makeother␣\doprivateothers}\MakePrivateOthers

We use this macro to re\catcode the space for marking the environments’ names
and the caret for marking chars such as ^^M, see line . So let’s define the list:

 \def\doprivateothers{\do\␣\do\^}\doprivateothers

Two chars for the beginning, and also the \MakeShortVerb command shall this list
enlarge with the char(s) declared. (There’s no need to add the backslash to this list since
all the relevant commands \string their argument whatever it is.)

Now the main macro indexing a macro’s name. It would be a verbatim :-) copy of
the doc’s one if I didn’t omit some lines irrelevant with my approach.

 \foone\obeylines{%
 \def\scan@macro#{%\scan@macro
 \ifx#^^M\@xa#\else\afterfi{\scan@macro@#}\fi%
 }% of \scan@macro,
 }% of \foone.

 \def\scan@macro@#{% we are sure to scan at least one tokenwhich is not the line\scan@macro@
end and therefore we define this macro as one-parameter.

Unlike in doc, here we have the escape char so we may just have it printed during
main scan char by char, i.e., in the lines and .

So, we step the checksum counter first,

 \step@checksum% (see line for details),

Then, unlike in doc, we do not check if the scanning is allowed, because here it’s
always allowed and required.

Of course, I can imagine horrible perversities, but I don’t think they should really be
taken into account. Giving the letter a \catcode other than surely would be one of
those perversities. Therefore I feel safe to take the character a as a benchmark letter.

 \ifcat␣a\@nx#%
 \quote@char#%
 \xdef\macro@iname{\gmd@maybequote#}% global for symmetrywith line

.
 \xdef\macro@pname{\string#}% we’ll print entire name of the macro

later.

We \string it here and in the lines and to be sure it is whole for easy
testing for special index entry formats, see line etc. Here we are sure the result of
\string is since its argument is .

 \afterfi{\@ifnextcat{a}{\gmd@finishifstar#}{%
\finish@macroscan}}%

 \else% # is not a letter, so we have just scanned a one-char CS.

Another reasonable \catcodes assumption seems to be that the digits are . Then
we don’t have to type (%)\expandafter\@gobble\string\a. We do the \uccode
trick to be sure that the char we write as the macro’s name is .

 {\uccode`=`#%
 \uppercase{\xdef\macro@iname{}}%
 }%
 \quote@char#%
 \xdef\macro@iname{\gmd@maybequote\macro@iname}%
 \xdef\macro@pname{\xiistring#}%
 \afterfi␣\finish@macroscan
 \fi}% of \scan@macro@. The \xiistring macro, provided by gmutils, is used

instead of original \string because we wish to get ␣(‘other’ space).

Now, let’s explain some details, i.e., let’s define them. We call the following macro
having known # to be .

 \def\continue@macroscan#{%\continue@macroscan
 \quote@char#%
 \xdef\macro@iname{\macro@iname␣\gmd@maybequote#}%
 \xdef\macro@pname{\macro@pname␣\string#}% we know# to be , so

we don’t need \xiistring.
 \@ifnextcat{a}{\gmd@finishifstar#}{\finish@macroscan}%
 }

As you may guess, \@ifnextcat is defined analogously to \@ifnextchar but the
test it does is \ifcat (not \ifx). (Note it wouldn’t work for an active char as the ‘pat-
tern’.)

We treat the star specially since in usual LATEX it should finish the scanning of a CS
name—we want to avoid scanning \command⋆argum as one CS.

 \def\gmd@finishifstar#{%\gmd@finishifstar
 \if⋆\@nx#\afterfi\finish@macroscan% note we protect # against ex-

pansion. In gmdoc verbatim scopes some chars are active (e.g. \).
 \else\afterfi\continue@macroscan
 \fi}

If someone really uses ⋆ as a letter please let me know.

 \def\quote@char#{{\uccode`=`#% at first I tookdigit for this\uccodeing\quote@char
but then # meant #〈#〉 in \uppercase’s argument, of course.

 \uppercase{%
 \@ifinmeaning␣\of␣\indexcontrols
 {\glet\gmd@maybequote\quotechar}%
 {\g@emptify\gmd@maybequote}%
 }%
 }}

This macro is used for catching chars that are MakeIndex’s controls. How does it
work?

\quote@char sort of re\catcodes its argument through the \uccode trick: as-
signs the argument as the uppercase code of the digit and does further work in the
\uppercase’s scope so the digit (a benchmark ‘other’) is substituted by # but the
\catcode remains so \gmd@ifinmeaning gets \quote@char’s # ‘other’ed as the
first argument.

In \quote@char the second argument for gmutils \@ifinmeaning is \index¦
controls defined as the (expanded and ‘other’) sequence of the MakeIndex controls.
\@ifinmeaning defines its inner macro \gmd@in@@ to take two parameters separated
by the first and the second \@ifinmeaning’s parameter, which are here the char inves-
tigated by \quote@char and the \indexcontrols list. The inner macro’s parameter
string is delimited by the macro itself, why not. \gmd@in@@ is put before a string con-
sisting of \@ifinmeaning’s second and first parameters (in such a reversed order) and
\gmd@in@@ itself. In such a sequence it looks for something fitting its parameter pat-
tern. \gmd@in@@ is sure to find the parameters delimiter (\gmd@in@@ itself) and the
separator, \ifismember’s # i.e., the investigated char, because they are just there. But
the investigated char may be found not near the end, where we put it, but among the
MakeIndex controls’ list. Then the rest of this list and \ifismember’s # put by us be-
come the second argument of \gmd@in@@. What \gmd@in@@ does with its arguments,
is just a check whether the second one is empty. This may happen iff the investigated
char hasn’t been found among the MakeIndex controls’ list and then \gmd@in@@ shall
expand to \iffalse, otherwise it’ll expand to \iftrue. (The \after… macros are
employed not to (mis)match just got \if… with the test’s \fi.) “(Deep breath.) You
got that?” If not, try doc’s explanation of \ifnot@excluded, pp. – of the v.b
dated // documentation, where a similar construction is attributed toMichael
Spivak.

Since version .g \@ifinmeaning is used also in testing whether a detector is
already present in the carrier in the mechanism of automatic detection of definitions
(line).

And now let’s take care of the MakeIndex control characters. We’ll define a list of
them to check whether we should quote a char or not. But we’ll do it at \begin{%
document} to allow the user to use some special MakeIndex style and in such a case
to redefine the four MakeIndex controls’ macros. We enrich this list with the backslash
because sometimes MakeIndex didn’t like it unquoted.

 \AtBeginDocument{\xdef\indexcontrols{%\indexcontrols
 \bslash\levelchar\encapchar\actualchar\quotechar}}

 \newif\ifgmd@glosscs% we use this switch to keep the information whether\ifgmd@glosscs
a history entry is a CS or not.

 \newcommand⋆\finish@macroscan{%\finish@macroscan

First we check if the current CS is not just being defined. The switch may be set true
in line

 \ifgmd@adef@cshook% if so, we throw it into marginpar and index as a def en-
try…

 \gmu@ifundefined{gmd/iexcl/\macro@pname\space}{% … if it’s not
excluded from indexing.

 \@xa\Code@MarginizeMacro\@xa{\macro@pname}%
 \@xa\@defentryze\@xa{\macro@pname}{}}{}% here we declare the

kind of index entry and define \last@defmark used by \changes
 \global\gmd@adef@cshookfalse% we falsify the hook that was set true

just for this CS.
 \fi

Wehave theCS’s name for indexing in\macro@iname and for print in\macro@pname.
So we index it. We do it a bit counter-crank way because we wish to use more general
indexing macro.

 \if\verbatimchar\macro@pname% it’s important that\verbatimchar comes
before the macro’s name: when it was reverse, the \tt CS turned this test
true and left the \verbatimchar what resulted with ‘\+tt’ typeset. Note
that this test should turn true iff the scanned macro name shows to be the
default \verb’s delimiter. In such a case we give \verb another delimiter,
namely :

 \def\im@firstpar{[%\im@firstpar
]}%
 \else\def\im@firstpar{}%\im@firstpar
 \fi
 \@xa␣\index@macro\im@firstpar\macro@iname\macro@pname
 \maybe@marginpar\macro@pname
 \if\xiispace\macro@pname\relax\gmd@texcodespace
 \else
 {\noverbatimspecials\Restore@Macro\verb
 \@xa\scanverb\@xa{\macro@pname}}% we typeset scanned CS.
 \fi
 \let\next\gmd@charbychar
 \gmd@detectors% for automatic detection of definitions. Defined and ex-

plained in the next section. It redefines \next if detects a definition com-
mand and thus sets the switch of line true.

 \next
 }

Now, the macro that checks whether the just scanned macro should be put into
a marginpar: it checks the meaning of a very special CS: whose name consists of
gmd/marpar/ and of the examined macro’s name.

 \def\maybe@marginpar#{%\maybe@marginpar
 \gmu@ifundefined{gmd/marpar/\@xa\detokenize\@xa{#}}{}{%
 \edef\gmu@tempa{%
 \unexpanded{\Text@Marginize⋆}%
 {\bslash\@xa\unexpanded\@xa{#}}%
 }\gmu@tempa

\macro@pname, which will be the only possible argument to \maybe@marg¦
% inpar, contains the macro’s name without the escape char so we
added it here.

 \@xa\g@relaxen

 \csname␣gmd/marpar/\@xa\detokenize\@xa{#}\endcsname% we re-
set the switch.

 }}
Since version .g we introduce automatic detection of definitions, it will be imple-

mented in the next section. The details of indexing CSes are implemented in the section
after it.

Automatic detection of definitions

To begin with, let’s introduce a general declaration of a defining command. \Declare¦
Defining comes in two flavours: ‘sauté’, and with star. The ‘sauté’ version without an
optional argument declares a defining command of the kind of\def and\newcommand:
whether wrapped in braces or not, its main argument is a CS. The star version without
the optional argument declares a defining command of the kind of \newenvironment
and\DeclareOption: whosemainmandatory argument is text. Both versions provide
an optional argument in which you can set the keys. Probably the most important key is
star. It determineswhether the starred version of a defining command should be taken
into account. For example, \newcommand should be declaredwith [star=true] while
\def with [star=false]. You can also write just [star] instead of [star=true].
It’s the default if the star key is omitted.

Another key is type. Its possible values are the (backslashless) names of the defining
commands, see below.

We provide now more keys for the xkeyvalish definitions: KVpref (the key prefix)
and KVfam (the key family). If not set by the user, they are assigned the default values
as in xkeyval: KVpref letters KV and KVfam the input file name. The latter assignment
is done only for the \DeclareOptionX defining command because in other xkeyval
definitions (\define@[…]key) the family is mandatory.

\DeclareDefining and the detectors

Note that the main argument of the next declaration should be a CS without star, unless
you wish to declare only the starred version of a command. The effect of this command
is always global.

 \outer\def\DeclareDefining{\begingroup\DeclareDefining
 \MakePrivateLetters
 \gmu@ifstar
 {\gdef\gmd@adef@defaulttype{text}\Declare@Dfng}%
 {\gdef\gmd@adef@defaulttype{cs}\Declare@Dfng}%
 }

The keys except star depend of \gmd@adef@currdef, therefore we set them hav-
ing known both arguments

 \newcommand⋆\Declare@Dfng[][]{%\Declare@Dfng
 \endgroup
 \Declare@Dfng@inner{#}{#}%
 \ifgmd@adef@star% this switchmaybe set false in first \Declare@Dfng@inner

(it’s the star key).
 \Declare@Dfng@inner{#}{#⋆}% The catcode of ⋆ doesn’t matter since

it’s in \csname…\endcsname everywhere.
 \fi}
 \def\Declare@Dfng@inner##{%\Declare@Dfng@inner
 \edef\gmd@resa{%
 \@nx\setkeys[gmd]{adef}{type=\gmd@adef@defaulttype}}%

 \gmd@resa
 {\escapechar\m@ne
 \xdef\gmd@adef@currdef{\string#}%\gmd@adef@currdef
 }%
 \gmd@adef@setkeysdefault
 \setkeys[gmd]{adef}{#}%
 \@xa\@ifinmeaning
 \csname␣gmd@detect@\gmd@adef@currdef\endcsname
 \of\gmd@detectors{}{%
 \@xa\gaddtomacro\@xa\gmd@detectors\@xa{%
 \csname␣gmd@detect@\gmd@adef@currdef\endcsname}}% weadd

a CS
% \gmd@detect@〈def name〉 (a detector) to the meaning of the de-
tectors’ carrier. And we define it to detect the # command.

 \@xa\xdef\csname␣gmd@detectname@\gmd@adef@currdef%
\endcsname{%

 \gmd@adef@currdef}%
 \edef\gmu@tempa{% this \edef is to expand \gmd@adef@TYPE.
 \global\@nx\@namedef{gmd@detect@\gmd@adef@currdef}{%
 \@nx\ifx
 \@xanxcs{gmd@detectname@\gmd@adef@currdef}%
 \@nx\macro@pname
 \@nx\n@melet{next}{gmd@adef@\gmd@adef@TYPE}%
 \@nx\n@melet{gmd@adef@currdef}{gmd@detectname@%

\gmd@adef@currdef}%
 \@nx\fi}}%
 \gmu@tempa
 \SMglobal\Store@MacroSt␣{gmd@detect@\gmd@adef@currdef}% we store

the CS to allow its temporary discarding later.
 }

 \def\gmd@adef@setkeysdefault{%\gmd@adef@setkeysdefault
 \setkeys[gmd]{adef}{star,prefix,KVpref}}

Note we don’t set KVfam. We do not so because for \define@key-likes family is
a mandatory argument and for \DeclareOptionX the default family is set to the input
file name in line .

 \define@boolkey[gmd]{adef}{star}[true]{}star

The prefix@〈command〉 key-value will be used to create additional index entry for
detecteddefiniendum (adefiniendum is the thingdefined, e.g. in\newenvironment{%
foo} the env. foo). For instance, \newcounter is declared with [prefix=\bslash␣
c@] in line and therefore \newcounter{foo} occurring in the code will index
both foo and \c@foo (as definition entries).

 \define@key[gmd]{adef}{prefix}[]{%prefix
 \edef\gmd@resa{%
 \def\@xanxcs{gmd@adef@prefix@\gmd@adef@currdef␣}{%
 #}}%
 \gmd@resa}

 \def\gmd@KVprefdefault{KV}% in a separate macro because we’ll need it in
\ifx.

A macro \gmd@adef@KVprefixset@〈command〉 if defined, will falsify an \ifnum
test that will decide whether create additional index entry together with the tests for
prefix〈command〉 and

 \define@key[gmd]{adef}{KVpref}[\gmd@KVprefdefault]{%KVpref
 \edef\gmd@resa{#}%
 \ifx\gmd@resa\gmd@KVprefdefault
 \else
 \@namedef{gmd@adef@KVprefixset@\gmd@adef@currdef}{}%
 \gmd@adef@setKV% whenever the KVpreffix is set (not default), the declared

command is assumed to be keyvalish.
 \fi
 \edef\gmd@resa{#}% because \gmd@adef@setKV redefined it.
 \edef\gmd@resa{%
 \def\@xanxcs{gmd@adef@KVpref@\gmd@adef@currdef}{%
 \ifx\gmd@resa\empty
 \else#@\fi}}% as in xkeyval, if the KV prefix is not empty, we add @ to it.
 \gmd@resa}

Analogously to KVpref, KVfam declared in \DeclareDefining will override the
family scanned from the code and, in \DeclareOptionX case, the default family which
is the input file name (only for the command being declared).

 \define@key[gmd]{adef}{KVfam}[]{%KVfam
 \edef\gmd@resa{#}%
 \@namedef{gmd@adef@KVfamset@\gmd@adef@currdef}{}%
 \edef\gmd@resa{%
 \def\@xanxcs{gmd@adef@KVfam@\gmd@adef@currdef}{%
 \ifx\gmd@resa\empty
 \else#@\fi}}%
 \gmd@resa
 \gmd@adef@setKV}% whenever the KVfamily is set, the declared command is

assumed to be keyvalish.

 \define@choicekey[gmd]{adef}{type}type
 [\gmd@adef@typevals\gmd@adef@typenr]
 {% the list of possible types of defining commands
 def,
 newcommand,
 cs,% equivalent to the two above, covers all the cases of defining a CS, includ-

ing the P TEX \new›… and LATEX \newlength.
 newenvironment,
 text,% equivalent to the one above, covers all the commands defining its first

mandatory argument that should be text, \DeclareOption e.g.
 define@key,% special case of more arguments important; covers the xkeyval

defining commands.
 dk,% a shorthand for the one above.
 DeclareOptionX,% another case of special arguments configuration, covers

the xkeyval homonym.
 dox,% a shorthand for the one above.
 kvo% one of option defining commands of the kvoptions package by Heiko

Oberdiek (a package available o CTAN in the oberdiek bundle).
 }
 {% In fact we collapse all the types just to four so far:
 \ifcase\gmd@adef@typenr% if def

 \gmd@adef@settype{cs}{}%
 \or% when newcommand
 \gmd@adef@settype{cs}{}%
 \or% when cs
 \gmd@adef@settype{cs}{}%
 \or% when newenvironment
 \gmd@adef@settype{text}{}%
 \or% when text
 \gmd@adef@settype{text}{}%
 \or% when define@key
 \gmd@adef@settype{dk}{}%
 \or% when dk
 \gmd@adef@settype{dk}{}%
 \or% when DeclareOptionX
 \gmd@adef@settype{dox}{}%
 \or% when dox
 \gmd@adef@settype{dox}{}%
 \or% when kvo
 \gmd@adef@settype{text}{}% The kvoptions option definitions take

first mandatory argument as the option name and they define a keyval
key whose macro’s name begins with the prefix/family, either default
or explicitly declared. The kvoptions prefix/family is supported in gm-
doc with [KVpref=,␣KVfam=〈family〉].

 \fi}

 \def\gmd@adef@settype##{%
 \def\gmd@adef@TYPE{#}%
 \ifnum=#␣% now we define (or not) a quasi-switch that fires for the keyvalish

definition commands.
 \gmd@adef@setKV
 \fi}

 \def\gmd@adef@setKV{%
 \edef\gmd@resa{%
 \def\@xanxcs{gmd@adef@KV@\gmd@adef@currdef}{}%
 }%
 \gmd@resa}

We initialise the carrier of detectors:

 \emptify\gmd@detectors

The definiendum of a command of the cs type is the next control sequence. There-
fore we only need a self-relaxing hook in \finish@macroscan.

 \newif\ifgmd@adef@cshook\ifgmd@adef@cshook

 \def\gmd@adef@cs{\global\gmd@adef@cshooktrue\gmd@charbychar}

For other kinds of definitions we’ll employ active chars of their arguments’ opening
braces, brackets and sergeants. In gmdoc code layer scopes the left brace is active so we
only add a hook to its meaning (see line ?? in gmverb) and here we switch it according to
the type of detected definition.

 \def\gmd@adef@text{\gdef\gmd@lbracecase{}\gmd@charbychar}

 \foone{%
 \catcode`\[\active

 \catcode`\<\active}
 {%

The detector of xkeyval \define@[…]key:

 \def\gmd@adef@dk{%
 \let[\gmd@adef@scanKVpref
 \catcode`\[\active
 \gdef\gmd@lbracecase{}%
 \gmd@adef@dfKVpref\gmd@KVprefdefault% We set the default value of

the xkeyval prefix. Each time again because an assignment
in \gmd@adef@dfKVpref is global.

 \gmd@adef@checklbracket}

The detector of xkeyval \DeclareOptionX:

 \def\gmd@adef@dox{%
 \let[\gmd@adef@scanKVpref
 \let<\gmd@adef@scanDOXfam
 \catcode`[\active
 \catcode`<\active
 \gdef\gmd@lbracecase{}%
 \gmd@adef@dfKVpref\gmd@KVprefdefault% We set the default values of

the xkeyval prefix…
 \edef\gmd@adef@fam{\gmd@inputname}% … and family.
 \gmd@adef@dofam
 \gmd@adef@checkDOXopts}%
 }

The case when the right bracket is next to us is special because it is already touched
by \futurelet (of CSes scanning macro’s \@ifnextcat), therefore we need a ‘future’
test.

 \def\gmd@adef@checklbracket{%
 \@ifnextchar[%
 \gmd@adef@scanKVpref\gmd@charbychar}% note that the prefix scanning

macro gobbles its first argument (undelimited) which in this case is [.

After a \DeclareOptionX-like defining command not only the prefix in square
brackets may occur but also the family in sergeants. Therefore we have to test presence
of both of them.

 \def\gmd@adef@checkDOXopts{%
 \@ifnextchar[\gmd@adef@scanKVpref%
 {\@ifnextchar<\gmd@adef@scanDOXfam\gmd@charbychar}}

 \def\gmd@adef@scanKVpref##]{%
 \gmd@adef@dfKVpref{#}%
 [#]\gmd@charbychar}

 \def\gmd@adef@dfKVpref#{%
 \ifnum=\csname␣gmd@adef@KVprefixset@\gmd@adef@currdef%

\endcsname
 \relax
 \else
 \edef\gmu@resa{%
 \gdef\@xa\@nx
 \csname␣gmd@adef@KVpref@\gmd@adef@currdef\endcsname{%

 \ifx\relax#\relax
 \else#@%
 \fi}}%
 \gmu@resa
 \fi}

 \def\gmd@adef@scanDOXfam{%
 \ifnum=\catcode`\>\relax
 \let\next\gmd@adef@scanfamoth
 \else
 \ifnum=\catcode`\>\relax
 \let\next\gmd@adef@scanfamact
 \else
 \PackageError{gmdoc}{>␣neither␣`other'␣nor␣`active'!␣

Make␣it
 `other'␣with␣\bslash␣AddtoPrivateOthers\bslash\>.}{}%
 \fi
 \fi
 \next}

 \def\gmd@adef@scanfamoth#>{%
 \edef\gmd@adef@fam{\@gobble#}% there is always \gmd@charbychar

first.
 \gmd@adef@dofam
 <\gmd@adef@fam>%
 \gmd@charbychar}

 \foone{\catcode`\>\active}
 {\def\gmd@adef@scanfamact#>{%
 \edef\gmd@adef@fam{\@gobble#}% there is always\gmd@charbychar

first.
 \gmd@adef@dofam
 <\gmd@adef@fam>%
 \gmd@charbychar}%
 }

The hook of the left brace consists of \ifcase that logically consists of three sub-
cases:
 —the default: do nothing in particular;
 —the detected defining command has onemandatory argument (is of the text type,

including kvoptions option definition);
– —we are after detection of a \define@key-like command so we have to scan two

mandatory arguments (case is for the family, case for the key name).

 \def\gm@lbracehook{%
 \ifcase\gmd@lbracecase\relax
 \or% when
 \afterfi{%
 \gdef\gmd@lbracecase{}%
 \gmd@adef@scanname}%
 \or% when —the first mandatory argument of two (\define@[…]key)
 \afterfi{%
 \gdef\gmd@lbracecase{}%
 \gmd@adef@scanDKfam}%
 \or% when —the second mandatory argument of two (the key name).

 \afterfi{%
 \gdef\gmd@lbracecase{}%
 \gmd@adef@scanname}%
 \fi}

 \def\gmd@lbracecase{}% we initialise the hook caser.

And we define the inner left brace macros:

 \foone{\catcode`\[␣\catcode`\]␣\catcode`\}␣}
 [% Note that till line the square brackets are grouping and the right brace is

‘other’.

Define themacro that reads andprocesses the\define@key family argument. It has
the parameter delimited with ‘other’ right brace. An active left brace that has launched
this macro had been passed through iterating \gmd@charbychar that now stands next
right to us.

 \def\gmd@adef@scanDKfam#}[%
 \edef\gmd@adef@fam[\@gobble#]% there is always \gmd@charbychar

first.
 \gmd@adef@dofam
 \gmd@adef@fam}%
 \gmd@charbychar]

 \def\gmd@adef@scanname#}[%
 \@makeother\[%
 \@makeother\<%

The scanned name begins with \gmd@charbychar, we have to be careful.

 \gmd@adef@deftext[#]%
 \@gobble#}%
 \gmd@charbychar]
]

 \def\gmd@adef@dofam{%
 \ifnum=\csname␣gmd@adef@KVfamset@\gmd@adef@currdef%

\endcsname
 \relax% a family declared with \DeclareDefining overrides the one cur-

rently scanned.
 \else
 \edef\gmu@resa{%
 \gdef\@xa\@nx
 \csname␣gmd@adef@KVfam@\gmd@adef@currdef\endcsname
 {\ifx\gmd@adef@fam\empty
 \else\gmd@adef@fam␣@%
 \fi}}%
 \gmu@resa
 \fi}

 \def\gmd@adef@deftext#{%
 \@xa\def\@xa\macro@pname\@xa{\@gobble#}% wegobble\gmd@charbychar,

cf. above.
 \edef\macro@pname{\@xa\detokenize\@xa{\macro@pname}␣}% note the

space at the end.
 \edef\macro@pname{\@xa\@xiispaces\macro@pname\@nil}%
 \@xa\Text@Marginize\@xa{\macro@pname}%

 \gmd@adef@indextext
 \edef\gmd@adef@altindex{%
 \csname␣gmd@adef@prefix@\gmd@adef@currdef␣\endcsname}%

and we add the xkeyval header if we are in xkeyval definition.

 \ifnum=\csname␣gmd@adef@KV@\gmd@adef@currdef␣\endcsname%
\relax% The
CS \gmd@adef@KV@〈def. command〉 is defined {} (so \ifnum gets
=\relax—true) iff 〈def. command〉 is a keyval definition. In
that case we check for the KVprefix and KVfamily. (Otherwise
\gmd@adef@KV@〈def. command〉 is undefined so \ifnum gets
=\relax—false.)

 \edef\gmd@adef@altindex{%
 \gmd@adef@altindex
 \csname␣gmd@adef@KVpref@\gmd@adef@currdef␣\endcsname}%
 \edef\gmd@adef@altindex{%
 \gmd@adef@altindex
 \csname␣gmd@adef@KVfam@\gmd@adef@currdef␣\endcsname}%
 \fi
 \ifx\gmd@adef@altindex\empty
 \else% wemake another index entry of the definiendumwith prefix/KVheader.
 \edef\macro@pname{\gmd@adef@altindex\macro@pname}%
 \gmd@adef@indextext
 \fi}

 \def\gmd@adef@indextext{%
 \@xa\@defentryze\@xa{\macro@pname}{}% declare the definiendum has

to have a definition entry and should appear without backslash in the
changes history.

 \gmd@doindexingtext% redefine \do to an indexing macro.
 \@xa\do\@xa{\macro@pname}}

So we have implemented automatic detection of definitions. Let’s now introduce
some.

Default defining commands

Some commands are easy to declare as defining:

 \DeclareDefining[star=false]\def
 \DeclareDefining[star=false]\pdef% it’s a gmutils’ shorthand for \protected\pdef

% \def.
 \DeclareDefining[star=false]\provide% a gmutils’ conditional \def.\provide
 \DeclareDefining[star=false]\pprovide% a gmutils’ conditional \pdef.\pprovide

But \def definitely not always defines an important macro. Sometimes it’s just
a scratch assignment. Therefore we define the next declaration. It turns the next oc-
currence of \def off (only the next one).

 \def\UnDef{{%
 \gmd@adef@selfrestore\def
 }}

 \def\UnPdef{{\gmd@adef@selfrestore\pdef}}

 \Store@Macro\UnDef% because the ‘hiding’ commands relax it.

 \def\HideDef{%

 \gmu@ifstar\UnDef{\HideDefining\def\relaxen\UnDef}}

 \def\ResumeDef{%
 \ResumeDefining\def
 \Restore@Macro\UnDef}

Note that I don’t declare \gdef, \edef neither \xdef. In my opinion their use as
‘real’ definition is very rare and then you may use \Define implemented later.

 \DeclareDefining[star=false]\newcount\newcount
 \DeclareDefining[star=false]\newdimen\newdimen
 \DeclareDefining[star=false]\newskip\newskip
 \DeclareDefining[star=false]\newif
 \DeclareDefining[star=false]\newtoks\newtoks
 \DeclareDefining[star=false]\newbox\newbox
 \DeclareDefining[star=false]\newread\newread
 \DeclareDefining[star=false]\newwrite\newwrite
 \DeclareDefining[star=false]\newlength\newlength
 \DeclareDefining[star=false]\DeclareDocumentCommand\DeclareDocumentCommand
 \DeclareDefining[star=false]\DeclareCommand\DeclareCommand

 \DeclareDefining\newcommand
 \DeclareDefining\renewcommand\renewcommand
 \DeclareDefining\providecommand
 \DeclareDefining\DeclareRobustCommand\DeclareRobustCommand
 \DeclareDefining\DeclareTextCommand\DeclareTextCommand
 \DeclareDefining\DeclareTextCommandDefault\DeclareTextCommandDefault

 \DeclareDefining⋆\newenvironment
 \DeclareDefining⋆\renewenvironment
 \DeclareDefining⋆[star=false]\DeclareOption\DeclareOption

%\DeclareDefining⋆\@namedef

 \DeclareDefining⋆[prefix=\bslash␣c@]\newcounter% this prefixprovides\newcounter
indexing also \c@〈counter〉.

 \DeclareDefining[type=dk,␣prefix=\bslash]\define@key\define@key
 \DeclareDefining[type=dk,␣prefix=\bslash␣if]\define@boolkey% the\define@boolkey

alternate index entry will be \if〈KVpref〉@〈KVfam〉@〈key name〉
 \DeclareDefining[type=dk,␣prefix=\bslash]\define@choicekey\define@choicekey

 \DeclareDefining[type=dox,␣prefix=\bslash]\DeclareOptionX% the al-\DeclareOptionX
ternate index entry will be \〈KVpref〉@〈KVfam〉@〈option name〉.

For \DeclareOptionX the default KVfamily is the input file name. If the source
file name differs from the name of the goal file (you TEX a .dtx not .sty e.g.), there is the
next declaration. It takes one optional and one mandatory argument. The optional is
the KVpref, the mandatory the KVfam.

 \newcommand⋆\DeclareDOXHead[][\gmd@KVprefdefault]{%\DeclareDOXHead
 \csname␣DeclareDefining\endcsname
 [type=dox,␣prefix=\bslash,␣KVpref=#,␣KVfam=#]%
 \DeclareOptionX\DeclareOptionX
 }

An example:

 \DeclareOptionX[Berg]<Lulu>{EvelynLear}{}

Check in the index for EvelynLear and \Berg@Lulu@EvelynLear. Now we set
in the comment layer \DeclareDOXHead[Webern]{Lieder} and

 \DeclareOptionX<AntonW>{ChneOelze}ChneOelze

The latter example shows also overriding the option header by declaring the default.
By the way, both the example options are not declared in the code actually.

Now the Heiko Oberdiek’s kvoptions package option definitions:

 \DeclareDefining[type=kvo,␣prefix=\bslash,␣KVpref=]%
\DeclareStringOption\DeclareStringOption

 \DeclareDefining[type=kvo,␣prefix=\bslash,␣KVpref=]%
\DeclareBoolOption\DeclareBoolOption

 \DeclareDefining[type=kvo,␣prefix=\bslash,␣KVpref=]%
\DeclareComplementaryOption\DeclareComplementaryOption

 \DeclareDefining[type=kvo,␣prefix=\bslash,␣KVpref=]%
\DeclareVoidOption\DeclareVoidOption

The kvoptions option definitions allow setting the default family/prefix for all defini-
tions forth so let’s provide analogon:

 \def\DeclareKVOFam#{%
 \def\do##{%
 \csname␣DeclareDefining\endcsname
 [type=kvo,␣prefix=\bslash,␣KVpref=,␣KVfam=#]##}%
 \do\DeclareStringOption
 \do\DeclareBoolOption
 \do\DeclareComplementaryOption
 \do\DeclareVoidOption
 }

As a nice exercise I recommend to think why this list of declarations had to be pre-
ceded (in the comment layer) with \HideAllDefining and for which declarations of
the above \DeclareDefining\DeclareDefining did not work. (The answers are
commented out in the source file.)

One remarkmore: if you define (in the code) a newdefining command (I did: a short-
hand for \DeclareOptionX[gmcc]<>), declare it as defining (in the commentary) after
it is defined. Otherwise its first occurrence shall fire the detector and mark next CS or
worse, shall make the detector expect some arguments that it won’t find.

Suspending (‘hiding’) and resuming detection

Sometimes wewant to suspend automatic detection of definitions. For \def we defined
suspending and resuming declarations in the previous section. Now let’s take care of
detection more generally.

The next command has no arguments and suspends entire detection of definitions.

 \def\HideAllDefining{%
 \ifnum=\csname␣gmd@adef@allstored\endcsname
 \SMglobal\Store@Macro\gmd@detectors
 \global\@namedef{gmd@adef@allstored}{}%
 \fi
 \global\emptify\gmd@detectors}% we make the carrier \empty not \re¦

lax to be able to declare new defining command in the scope of \Hide¦
All…

The\ResumeAllDefining command takes no arguments and restores themeaning
of the detectors’ carrier stored with \HideAllDefining

 \def\ResumeAllDefining{%
 \ifnum=\csname␣gmd@adef@allstored\endcsname\relax
 \SMglobal\Restore@Macro\gmd@detectors
 \SMglobal\Restore@Macro\UnDef
 \global\@namedef{gmd@adef@allstored}{}%
 \fi}

Note that \ResumeAllDefining discards the effect of any \DeclareDefining
that could have occurred between \HideAllDefining and itself.

The \HideDefining command takes one argument which should be a defining
command (alwayswithout star). \HideDefining suspends detection of this command
(also of its starred version) until \ResumeDefining of the same command or \Re¦
sumeAllDefining.

 \def\HideDefining{\begingroup
 \MakePrivateLetters
 \gmu@ifstar\Hide@DfngOnce\Hide@Dfng}

 \def\Hide@Dfng#{%
 \escapechar\m@ne
 \gn@melet{gmd@detect@\string#}{relax}%
 \gn@melet{gmd@detect@\string#⋆}{relax}%
 \ifx\def#\global\relaxen\UnDef\fi
 \endgroup}

 \def\Hide@DfngOnce#{%
 \gmd@adef@selfrestore#%
 \endgroup}

 \def\gmd@adef@selfrestore#{%
 \@ifundefined{gmd@detect@\strip@bslash{#}}{%
 \SMglobal\@xa\Store@Macro
 \csname␣gmd@detect@\strip@bslash{#}\endcsname}{}%
 \global\@nameedef{gmd@detect@\strip@bslash{#}}{%
 \@nx\gmu@if␣x%
 {\@xanxcs{gmd@detectname@\strip@bslash{#}}%
 \@nx\macro@pname}% we compare the detect(ed) namewith\macro@pname.

 {\def\@nx\next{% this \next will be executed in line .
 \SMglobal\Restore@Macro␣% they both are \protected.
 \@xanxcs{gmd@detect@\string#}%
 \@nx\gmd@charbychar}%
 \@nx}%
 {}% or do nothing if the CS’ names are unequal.
 }% of \@nameedef.
 }% of \gmd@adef@selfrestore.

The \ResumeDefining command takes a defining command as the argument and
resumes its automatic detection. Note that it restores also the possibly undefined de-
tectors of starred version of the argument but that is harmless I suppose until we have
millions of CSes.

 \def\ResumeDefining{\begingroup
 \MakePrivateLetters

 \gmd@ResumeDfng}
 \def\gmd@ResumeDfng#{%
 \escapechar\m@ne
 \SMglobal\Restore@MacroSt{gmd@detect@\string#}%
 \SMglobal\Restore@MacroSt{gmd@detect@\string#⋆}%
 \endgroup}

Indexing of CSes

The inner macro indexing macro. # is the \verb’s delimiter; # is assumed to be the
macro’s namewithMakeIndex-control chars quoted. # is amacro storing the macro’s
name, usually \macro@pname, built with \stringing every char in lines ,
and . # is used only to test if the entry should be specially formatted.

 \newcommand⋆\index@macro[][\verbatimchar]{{%\index@macro
 \gmu@ifundefined{gmd/iexcl/\@xa\detokenize\@xa{#␣}}%
 {% # is not excluded from index
 \gmu@ifundefined{gmd/defentry/\@xa\detokenize\@xa{#␣}}%
 {% # is not def entry
 \gmu@ifundefined{gmd/usgentry/\@xa\detokenize\@xa{#␣}}%
 {% # is not usg. entry
 \edef\kind@fentry{\CommonEntryCmd}}%
 {% # is usg. entry
 \def\kind@fentry{UsgEntry}%
 \un@usgentryze{#}}%
 }%
 {% # is def entry
 \def\kind@fentry{DefEntry}%
 \un@defentryze{#}%
 }% of gmd/defentry/ test’s ‘else’
 \if@pageindex\@pageinclindexfalse\fi% should it be here or there?

Definitely here because we’ll wish to switch the switch with a declara-
tion.

 \if@pageinclindex
 \edef\gmu@tempa{gmdindexpagecs{\HLPrefix}{%

\kind@fentry}{\EntryPrefix}}%
 \else
 \edef\gmu@tempa{gmdindexrefcs{\HLPrefix}{%

\kind@fentry}{\EntryPrefix}}%
 \fi
 \edef\gmu@tempa{\IndexPrefix#\actualchar%
 \quotechar\bslash␣verb⋆#\quoted@eschar##% The lastmacro

in this line usually means the first two, but in some cases it’s rede-
fined to be empty (when we use \index@macro to index not a CS).

 \encapchar\gmu@tempa}%
 \@xa\special@index\@xa{\gmu@tempa}% We give the indexing macro

the argument expanded so that hyperref may see the explicit encap-
char in order not to add its own encapsulation of |hyperpage when
the (default) hyperindex=true option is in force. (After this setting
the \edefs in the above may be changed to \defs.)

 }{}% closing of gmd/iexcl/ test.
 }}
 \def\un@defentryze#{%

 \ifcsname␣gmd/defentry/\@xa\detokenize\@xa{#␣}\endcsname
 \@xa\g@relaxen\csname␣gmd/defentry/\@xa\detokenize\@xa{#␣}%

\endcsname
 \fi
 \ifx\gmd@detectors\empty
 \g@relaxen\last@defmark
 \fi}% the last macro (assuming \fi is not a macro :-) is only used by \changes.

If we are in the scope of automatic detection of definitions, we want to
be able not to use \Define but write \changes after a definition and
get proper entry. Note that in case of automatic detection of definitions
\last@defmark’s value keeps until the next definition.

 \def\un@usgentryze#{%
 \ifcsname␣gmd/usgentry/\@xa\detokenize\@xa{#␣}\endcsname
 \@xa\g@relaxen\csname␣gmd/usgentry/\@xa\detokenize\@xa{#␣}%

\endcsname
 \fi}

 \@emptify\EntryPrefix% this macro seems to be obsolete now (v.d).

For the case of page-indexing a macro in the commentary when codeline index op-
tion is on:

 \newif\if@pageinclindex\if@pageinclindex

 \newcommand⋆\quoted@eschar{\quotechar\bslash}% we’ll redefine it when\quoted@eschar
indexing an environment.

Let’s initialise \IndexPrefix

 \def\IndexPrefix{}

The \IndexPrefix and \HLPrefix (‘HyperLabel Prefix’) macros are given with
account of a possibility of documenting several files in(to) one document. In such case
the user may for each file \def\IndexPrefix{〈package name〉!} for instance and it
will work as main level index entry and \def\HLPrefix{〈package name〉} as a prefix
in hypertargets in the codelines. They are redefined by \DocInclude e.g.

 \if@linesnotnum\@pageindextrue\fi
 \AtBeginDocument{%
 \if@pageindex
 \def\gmdindexrefcs####{\csname#\endcsname{%

\hyperpage{#}}}% in the page case we gobble the third argument
that is supposed to be the entry prefix.

 \let\gmdindexpagecs=\gmdindexrefcs
 \else
 \def␣\gmdindexrefcs####{\gmiflink[clnum.#]{%
 \csname#\endcsname{#}}}%
 \def␣\gmdindexpagecs####{\hyperlink{page.#}{%
 \csname#\endcsname{\gmd@revprefix{#}#}}}%

 \def\gmd@revprefix#{%
 \def\gmu@tempa{#}%
 \ifx\gmu@tempa\@empty␣p.\,\fi}

 \providecommand⋆\HLPrefix{}% it’ll be the hypertargets names’ prefix in\HLPrefix
multi-docs. Moreover, it showed that if it was empty, hyperref saw du-
plicates of the hyper destinations, which was perfectly understandable

(codelinenum.madeby\refstepcounter andcodelinenum.
made by \gmhypertarget). But since v. it is not a problem anymore
because during the automatic \hypertargeting the lines are labelled
clnum.〈number〉. When \HLPrefix was defined as dot, MakeIndex re-
jected the entries as ‘illegal page number’.

 \fi}

The definition is postponed till \begin{document} because of the \PageIndex
declaration (added for doc-compatibility), see line .

I design the index to contain hyperlinking numbers whether they are the line num-
bers or page numbers. In both cases the last parameter is the number, the one before
the last is the name of a formatting macro and in line number case the first parameter is
a prefix for proper reference in multi-doc.

I take account of three kinds of formatting the numbers: . the ‘def’ entry, . a ‘us-
age’ entry, . a common entry. As in doc, let them be underlined, italic and upright
respectively.

 \def\DefEntry#{\underline{#}}
 \def\UsgEntry#{\textit{#}}

The third option will be just \relax by default:

 \def\CommonEntryCmd{relax}

In line it’s \edefed to allow an ‘unmöglich’ situation that the userwants to have
the common index entries specially formatted. I use this to make all the index entries of
the driver part to be ‘usage’, see the source of chapter .

Now let’s \def themacros declaring aCS to be indexed specialway. Each declaration
puts the ed name of themacro given it as the argument into propermacro to be \ifxed
in lines and respectively.

Now we are ready to define a couple of commands. The ⋆ versions of them are for
marking environments and implicit CSes.

 \outer\def\DefIndex{\begingroup
 \MakePrivateLetters
 \gmu@ifstar
 {\@sanitize\MakePrivateOthers%
 \Code@DefIndexStar}%
 {\Code@DefIndex}}

 \long\def\Code@DefIndex#{\endgroup{%
 \escapechar\m@ne% becausewewill compare themacro’s namewith a string

without the backslash.
 \@defentryze{#}{}}}

 \long\def\Code@DefIndexStar#{%
 \endgroup{%
 \addto@estoindex{#}%
 \@defentryze{#}{}}%
 }

 \def\gmd@justadot{.}

 \long\def\@defentryze##{%
 \@xa\glet\csname␣gmd/defentry/\detokenize{#␣}\endcsname%

\gmd@justadot% The

LATEX \@namedef macro could not be used since it’s not ‘long’. The space
to sound with the checker.

 \ifcat\relax\@xa\@nx\@firstofmany#\@nil
if we meet a CS, then maybe it’s a CS to be ‘defentryzed’ or maybe it’s a ‘verbatim

special’CS. The onlyway to distinguish those cases is to assume there shouldn’t
be a verbatim containing only a ‘verbatim special’ CS.

 \@xa\def\@xa\gmu@tempa\@xa{\@allbutfirstof#\@nil}%
 \ifx\gmu@tempa\@empty
 \afterfifi\@firstoftwo% if # is a single CS, we \xiistring it. Oth-

erwise we \detokenize it.
 \else\afterfifi\@secondoftwo
 \fi
 \else\@xa\@secondoftwo
 \fi
 {\xdef\last@defmark{\xiistring#}}% we \string the argument just in\last@defmark

case it’s a control sequence. But when it can be a CS, we \@defentryze
in a scope of \escapechar=-, so there will never be a backslash at the
beginning of \last@defmark’s meaning (unless we \@defentryze \\).

 {\xdef\last@defmark{\detokenize{#}}}%
 \@xa\gdef\csname␣gmd/isaCS/\last@defmark\endcsname{#}% # is ei-

ther or . It is the information whether this entry is a CS or not.
 }% of \@defentryze.
 \long\def\@usgentryze#{%
 \@xa\let\csname␣gmd/usgentry/\detokenize{#}\endcsname%

\gmd@justadot}
Initialise \envirs@toindex

 \@emptify\envirs@toindex
Now we’ll do the same for the ‘usage’ entries:

 \outer\def\CodeUsgIndex{\begingroup
 \MakePrivateLetters
 \gmu@ifstar
 {\@sanitize\MakePrivateOthers%
 \Code@UsgIndexStar}%
 {\Code@UsgIndex}}

The ⋆ possibility is for marking environments etc.
 \long\def\Code@UsgIndex#{%
 \endgroup{%
 \escapechar\m@ne
 \global\@usgentryze{#}}}
 \long\def\Code@UsgIndexStar#{%
 \endgroup
 {%
 \addto@estoindex{#}%
 \@usgentryze{#}}%
 }

For the symmetry, if we want to mark a control sequence or an environment’s name
to be indexed as a ‘normal’ entry, let’s have:

 \outer\def\CodeCommonIndex{\begingroup

 \MakePrivateLetters
 \gmu@ifstar
 {\MakePrivateOthers\@sanitize\Code@CommonIndexStar}%
 {\Code@CommonIndex}}

 \long\def\Code@CommonIndex#{\endgroup}

 \long\def\Code@CommonIndexStar#{%
 \endgroup\addto@estoindex{#}}

And now let’s define commands to index the control sequences and environments
occurring in the narrative.

 \long\def\text@indexmacro#{%
 {\escapechar\m@ne␣\xdef\macro@pname{\xiistring#}}%
 \@xa\quote@mname\macro@pname\relax% we process the CS’s name char by

char and quote MakeIndex controls. \relax is the iterating macro’s stop-
per. The scannedCS’s quotedname shall be the expansion of\macro@iname.

 \if\verbatimchar\macro@pname
 \def\im@firstpar{[]}%
 \else\def\im@firstpar{}%
 \fi
 {\do@properindex% see line .
 \@xa␣\index@macro\im@firstpar\macro@iname\macro@pname}}

The macro defined below (and the next one) are executed only before a macro’s
name i.e. a nonempty sequence of character(s). This sequence is delimited (guarded)
by \relax.

 \def\quote@mname{%
 \def\macro@iname{}%
 \quote@charbychar}

 \def\quote@charbychar#{%
 \ifx\relax#% finish quoting when you meet \relax or:
 \else
 \ifnum\ifcat\@nx#\@nx~\fi\ifcat\@nx#\relax\fi>␣% we can

meet active char and/or control sequences (made by) verbatim specials,
therefore we check whether # is an active char and if it is a CS.

 \afterfifi{% we can meet an active char or a CS iff we use verbatim spe-
cials.

 \ifdefined\verbatim@specials@list
 \afterfi{%
 \begingroup
 \escapechar\@xa\@xa\@xa`\@xa\@firstofmany%

\verbatim@specials@list\@nil
 \@xa\endgroup
 \@xa\quote@charbychar\detokenize{#}% for aCS \detokenize

adds a space but if so, it will be ignored by the argument scanner.
 }% of \afterfi.
 \else\PackageError{gmdoc}{Please␣report␣a\space␣bug␣in
 \bslash␣quote@charbychar␣in␣line␣}{}%
 \fi% of \ifdefined\verbatim@specials@list.
 }% of \afterfifi.
 \else
 \quote@char#%

 \xdef\macro@iname{\macro@iname␣\gmd@maybequote#}%
 \afterfifi\quote@charbychar
 \fi
 \fi}

The next command will take one argument, which in plain version should be a con-
trol sequence and in the starred version also a sequence of chars allowed in environment
names or made other by \MakePrivateOthers macro, taken in the curly braces.

 \def\TextUsgIndex{\begingroup
 \MakePrivateLetters
 \gmu@ifstar{\MakePrivateOthers\Text@UsgIndexStar}{%

\Text@UsgIndex}}

 \long\def\Text@UsgIndex#{%
 \endgroup\@usgentryze#%
 \text@indexmacro#}

 \long\def\Text@UsgIndexStar#{\endgroup\@usgentryze{#}%
 \text@indexenvir{#}}

 \long\def\text@indexenvir#{%
 {\verbatim@specials
 \edef\macro@pname{\xiistring#}%
 \if\bslash\@xa\@firstofmany\macro@pname\@nil% if\stringed# be-

gins with a backslash, we will gobble it to make MakeIndex not see it.
 \edef\gmu@tempa{\@xa\@gobble\macro@pname}%
 \@tempswatrue
 \else
 \let\gmu@tempa\macro@pname
 \@tempswafalse
 \fi
 \@xa\quote@mname\gmu@tempa\relax% we process \stringed # char by

char and quote MakeIndex controls. \relax is the iterating macro’s stop-
per. The quoted \stringed # shall be the meaning of \macro@iname.

 \if@tempswa
 \def\quoted@eschar{\quotechar\bslash}%
 \else\@emptify\quoted@eschar\fi% we won’t print any backslash be-

fore an environment’s name, but we will before a CS’s name.
 \do@properindex% see line .
 \index@macro\macro@iname\macro@pname}}

 \def\TextCommonIndex{\begingroup
 \MakePrivateLetters
 \gmu@ifstar{\MakePrivateOthers\Text@CommonIndexStar}{%

\Text@CommonIndex}}

 \long\def\Text@CommonIndex#{\endgroup
 \text@indexmacro#}

 \long\def\Text@CommonIndexStar#{\endgroup
 \text@indexenvir{#}}

As you see in the lines and , themarkers of special formatting are reset after
first use.

But wewish the CSes not only to be indexed special way but also to be put in margin-
pars. So:

 \outer\def\CodeMarginize{\begingroup
 \MakePrivateLetters
 \gmu@ifstar
 {\MakePrivateOthers\egCode@MarginizeEnvir}
 {\egCode@MarginizeMacro}}

One more expansion level because we wish \Code@MarginizeMacro not to begin
with \endgroup because in the subsequent macros it’s used after ending the re\cat¦
codeing group.

 \long\def\egCode@MarginizeMacro#{\endgroup
 \Code@MarginizeMacro#}

 \long\def\Code@MarginizeMacro#{{% # is always a CS.
 \escapechar\m@ne
 \@xa\glet\csname␣gmd/marpar/\xiistring#\endcsname%

\gmd@justadot
 }}

 \long\def\egCode@MarginizeEnvir#{\endgroup
 \Code@MarginizeEnvir{#}}

 \long\def\Code@MarginizeEnvir#{\addto@estomarginpar{#}}

And amacro really putting the environment’s name in amarginpar shall be triggered
at the beginning of the nearest codeline.

Here it is:

 \def\mark@envir{%
 \ifx\envirs@tomarginpar\@empty
 \else
 \def\do{\Text@Marginize⋆}%
 \envirs@tomarginpar%
 \g@emptify\envirs@tomarginpar%
 \fi
 \ifx\envirs@toindex\@empty
 \else
 {\verbatim@specials
 \gmd@doindexingtext
 \envirs@toindex
 \g@emptify\envirs@toindex}%
 \fi}

 \def\gmd@doindexingtext{%
 \def\do##{% the \envirs@toindex list contains \stringed macros or en-

vironments’ names in braces and each preceded with \do. We extract the
definition because we use it also in line .

 \if\bslash\@firstofmany##\@nil% if ## begins with a backslash, we
will gobble it for MakeIndex not see it.

 \edef\gmd@resa{\@gobble##}%
 \@tempswatrue
 \else
 \edef\gmd@resa{##}\@tempswafalse
 \fi
 \@xa\quote@mname\gmd@resa\relax% see line & subs. for commen-

tary.
 {\if@tempswa

 \def\quoted@eschar{\quotechar\bslash}%
 \else\@emptify\quoted@eschar
 \fi
 \index@macro\macro@iname{##}}}%
 }

One very important thing: initialisation of the list macros:

 \@emptify\envirs@tomarginpar
 \@emptify\envirs@toindex

For convenience we’ll make the ‘private letters’ first not to bother ourselves with
\makeatletter for instancewhenwewantmark someCS. And\MakePrivateOthers
for the environment and other string case.

 \outer\def\Define{% note that since it’s \outer, it doesn’t have to be \pro¦
tected.

 \begingroup
 \MakePrivateLetters

We do \MakePrivateLetters before \gmu@ifstar in order to avoid a situation
that TEX sees a control sequence with improper name (another CS than we wished) (be-
cause \gmu@ifstar establishes the \catcodes for the next token):

 \gmu@ifstar{\@sanitize%
 \Code@DefEnvir}{\Code@DefMacro}}

 \outer\def\CodeUsage{\begingroup
 \MakePrivateLetters
 \gmu@ifstar{%
 \@sanitize%
 \MakePrivateOthers
 \Code@UsgEnvir}{\Code@UsgMacro}}

And then we launch the macros that close the group and do the work.

 \DeclareCommand\Code@DefMacro\long{om}{%\Code@DefMacro
 \Code@DefIndex#% we use the internal macro; it’ll close the group.
 \IfValueTF{#}%
 {\Code@MarginizeMacro#}%
 {\Code@MarginizeMacro#}%
 }

 \DeclareCommand\Code@UsgMacro\long{om}{%\Code@UsgMacro
 \Code@UsgIndex#% here also the internal macro; it’ll close the group
 \IfValueTF{#}%
 {\Code@MarginizeMacro#}%
 {\Code@MarginizeMacro#}%
 }

The next macro is taken verbatim ;-) from doc and the subsequent \lets, too.

 \def\codeline@wrindex#{\if@filesw
 \immediate\write\@indexfile
 {\string\indexentry{#}%
 {\HLPrefix\number\c@codelinenum}}\fi}

 \def\codeline@glossary#{% It doesn’t need to establish a group since it is al-
ways called in a group.

 \if@pageinclindex
 \edef\gmu@tempa{gmdindexpagecs{\HLPrefix}{relax}{%

\EntryPrefix}}%
 \else
 \edef\gmu@tempa{gmdindexrefcs{\HLPrefix}{relax}{%

\EntryPrefix}}% relax stands for the formatting command. But
we don’t want to do anything special with the change history entries.

 \fi
 \protected@edef\gmu@tempa{%
 \@nx\protected@write\@nx\@glossaryfile{}%
 {\string\glossaryentry{#\encapchar\gmu@tempa}%
 {\HLPrefix\number\c@codelinenum}}}%
 \gmu@tempa
 }

We initialise it due to the option (or lack of the option):

 \AtBeginDocument{%
 \if@pageindex
 \let\special@index=\index
 \let\gmd@glossary\glossary
 \else
 \let\special@index=\codeline@wrindex
 \let\gmd@glossary\codeline@glossary
 \fi}% postponed till \begin{document} with respect of doc-like declarations.

And in case we don’t want to index:

 \def\gag@index{\let\index=\@gobble
 \let\codeline@wrindex=\@gobble}

We’ll use it in one more place or two. And we’ll wish to be able to undo it so let’s
copy the original meanings:

 \Store@Macros{\index\codeline@wrindex}

 \def\ungag@index{\Restore@Macros␣{\index\@@codeline@wrindex}}

Our next task is to define macros that’ll mark and index an environment or other
string in the code. Because of lack of a backslash, no environment’s name is scanned so
we have to proceed different way. But we wish the user to have symmetric tools, i.e., the
‘def’ or ‘usage’ use of an environment should be declared before the line where the envi-
ronment occurs. Note the slight difference between these and the commands to declare
a CS marking: the latter do not require to be used immediately before the line containing
the CS to be marked. We separate indexing from marginizing to leave a possibility of
doing only one of those things.

 \DeclareCommand\Code@DefEnvir\long{om}{%\Code@DefEnvir
 \endgroup
 {%
 \IfValueTF{#}%
 {\addto@estomarginpar{#}}%
 {\addto@estomarginpar{#}}%
 \addto@estoindex{#}%
 \@defentryze{#}{}}}

 \DeclareCommand\Code@UsgEnvir\long{om}{%\Code@UsgEnvir
 \endgroup

 {%
 \IfValueTF{#}%
 {\addto@estomarginpar{#}}%
 {\addto@estomarginpar{#}}%
 \addto@estoindex{#}%
 \@usgentryze{#}}}

 \long\def\addto@estomarginpar#{%
 \gaddtomacro\envirs@tomarginpar{\do{#}}}

 \long\def\addto@estoindex#{%
 \gaddtomacro\envirs@toindex{\do{#}}}

And now a command to mark a ‘usage’ occurrence of a CS, environment or another
string in the commentary. As the ‘code’ commands this also has plain and starred ver-
sion, first for CSes appearing explicitly and the latter for the strings and CSes appearing
implicitly.

 \def\TextUsage{\begingroup
 \MakePrivateLetters
 \gmu@ifstar{\@sanitize\MakePrivateOthers
 \Text@UsgEnvir}{\Text@UsgMacro}}

 \DeclareCommand\Text@UsgMacro\long{om}{%\Text@UsgMacro
 \endgroup
 \IfValueTF{#}%
 {\Text@Marginize⋆{#}{\scanverb⋆{#}}}%
 {\Text@Marginize⋆{#}{\scanverb⋆{#}}}%
 \begingroup\Code@UsgIndex#% we declare the kind of formatting of the en-

try.
 \text@indexmacro#}

 \DeclareCommand\Text@UsgEnvir\long{om}{%\Text@UsgEnvir
 \endgroup
 \IfValueTF{#}%
 {\Text@Marginize⋆{#}{\scanverb⋆{#}}}%
 {\Text@Marginize⋆{#}{\scanverb⋆{#}}}%
 \@usgentryze{#}% we declare the ‘usage’ kind of formatting of the entry and

index the sequence #.
 \text@indexenvir{#}}

We don’t provide commands to mark a macro’s or environment’s definition present
within the narrative because we think there won’t be any: one defines macros and envi-
ronments in the code not in the commentary.

 \pdef\TextMarginize{\@bsphack\begingroup
 \MakePrivateLetters
 \gmu@ifstar{%
 \MakePrivateOthers\egText@MarginizeEnv}{%

\egText@MarginizeCS}}

 \long\def\egText@MarginizeEnv#{\endgroup
 \Text@Marginize⋆{#}%
 \@esphack}

 \long\def\egText@MarginizeCS#{%
 \endgroup
 \Text@Marginize⋆{#}%

 }
We check whether the margin pars are enabled and proceed respectively in either

case.
 \if@marginparsused
 \reversemarginpar
 \marginparpush\z@
 \marginparwidthpc\relax

You may wish to put not only macros and environments to a marginpar.
 \long\def\gmdmarginpar#{%
 \marginpar{\raggedleft\strut
 \hskipptplusptminuspt%
 #}}%
 \else
 \long\def\gmdmarginpar#{}%
 \fi
 \let\gmu@tempa\all@stars
 \@xa\addtomacro\@xa\gmu@tempa\@xa{\all@unders}
 \@xa\DeclareCommand\@xa\Text@Marginize\@xa!%
 \@xa{\@xa␣Q\@xa{\gmu@tempa}m}{%
 \gmdmarginpar{%
 \addtomacro\verb@lasthook{\marginpartt}%
 \IfValueTF{#}{\scanverb#}{\scanverb}{#}}%
 }% of \Text@Marginize.

Note that the above command will just gobble its arguments if the marginpars are
disabled.

Itmay be advisable to choose a condensed typewriter font for themarginpars, if there
is any. (The Latin Modern font family provides a light condensed typewriter font, it’s
set in gmdocc class.)

 \let\marginpartt\narrativett
If we print also the narration lines’ numbers, then the index entries for CSes and

environments marked in the commentary should have codeline numbers not page num-
bers and that is \let in line . On the other hand, if we don’t print narration lines’
numbers, then amacro or an environment marked in the commentary should have page
number not codeline number. This we declare here, among others we add the letter p
before the page number.

 \def\do@properindex{%
 \if@printalllinenos\else
 \@pageinclindextrue
 \let\special@index=\index
 \fi}

In doc all the ‘working’ TEX code should be braced in(to) the macrocode environ-
ments. Here another solutions are taken so to be doc-compatible we only should nearly-
ignore macrocode[⋆]s with their Percent and The Four Spaces Preceding ;-) . I.e., to
ensure the line ends are ‘queer’. And that the DocStrip directives will be typeset as the
DocStrip directives. And that the usual code escape char will be restored at \end{%
macrocode}. And to add the vertical spaces.

If you know doc conventions, note that gmdoc does not require \end{macrocode} to
be preceded with any particular number of any char :-) .

 \newenvironment⋆{macrocode⋆}{%macrocode⋆
 \if@codeskipput\else\par\addvspace\CodeTopsep%

\@codeskipputgtrue\fi
 \QueerEOL}%
 {\par\addvspace\CodeTopsep\CodeEscapeChar\\}

Let’s remind that the starred version makes ␣ visible, which is the default in gmdoc
outside macrocode.

So we should make the spaces invisible for the unstarred version.

 \newenvironment⋆{macrocode}{%macrocode
 \if@codeskipput\else\par\addvspace\CodeTopsep%

\@codeskipputgtrue\fi
 \QueerEOL}%
 {\par\addvspace\CodeTopsep\CodeEscapeChar\\}

Note that at the end of both the above environments the \’s rôle as the code escape
char is restored. This is crafted for the \SpecialEscapechar macro’s compatibility:
this macro influences only the first macrocode environment. The situation that the user
wants some queer escape char in general and in a particular macrocode yet another
seems to me “unmöglich, Prinzessin”.

Since the first .dtx I tried to compile after the first published version of gmdocuses a lot
of commented out code in macrocodes, it seems to me necessary to add a possibility to
typeset macrocodes as if they were a kind of verbatim, that is to leave the code layer
and narration layer philosophy.

 \let\oldmc\macrocodeoldmc
 \let\endoldmc\endmacrocode
 \n@melet{oldmc⋆}{macrocode⋆}oldmc⋆
 \n@melet{endoldmc⋆}{endmacrocode⋆}

Now we arm oldmc and olmc⋆ with the macro looking for %␣␣␣\end{〈envir
name〉}.

 \addtomacro\oldmc{\@oldmacrocode@launch}%
 \@xa\addtomacro\csname␣oldmc⋆\endcsname{%
 \@oldmacrocode@launch}

 \def\@oldmacrocode@launch{%
 \emptify\gmd@textEOL% to disable it in\gmd@docstripdirective launched

within the code.
 \gmd@ctallsetup
 \glet\stored@code@delim\code@delim
 \@makeother\^^B\CodeDelim⋆\^^B%
 \ttverbatim␣\gmd@DoTeXCodeSpace
 \@makeother\|% because \ttverbatim doesn’t do that.
 \MakePrivateLetters% see line .
 \docstrips@percent␣\@makeother\>%

sine qua non of the automatic delimiting is replacing possible ⋆in the environ-
ment’s name with ⋆. Not to complicate assume ⋆ may occur at most once and only
at the end. We also assume the environment’s name consists only of character tokens
whose catcodes (except of ⋆) will be the same in the verbatim text.

 \@xa\gmd@currenvxistar\@currenvir⋆\relax

 Richard Strauss after Oscar Wilde, Salome.

 \@oldmacrocode}

 \foone{\catcode`⋆␣}
 {\def\gmu@xistar{⋆}}

 \def\gmd@currenvxistar#⋆#\relax{%
 \edef\@currenvir{#\if⋆#\gmu@xistar\fi}}

The trick is that # may be either ⋆ or empty. If it’s ⋆, the test is satisfied and
\if…\fi expands to \gmu@xistar. If # is empty, the test is also satisfied since
\gmu@xistar expands to ⋆ but there’s nothing to expand to. So, if the environment’s
name ends with ⋆, it’ll be substituted with ⋆or else nothing will be added. (Note that
a ⋆ not at the end of env. name would cause a disaster.)

 \foone{%
 \catcode`[=␣\catcode`]=
 \catcode`\{=\active␣\@makeother\}
 \@makeother\^^B
 \catcode`/=␣\catcode`\\=\active
 \catcode`&=␣\catcode`⋆=
 \catcode`\%=\active␣\obeyspaces}&␣%
 [& here the \foone’s second pseudo-argument begins

 /def/@oldmacrocode[&
 /bgroup/let␣=/relax& to avoid writing /@nx␣ four times.
 /xdef/oldmc@def[&
 /def/@nx/oldmc@end####/@nx%␣␣␣␣/@nx\end&
 /@nx{/@currenvir}[&
 ####^^B/@nx/gmd@oldmcfinis]]&
 /egroup& now \oldmc@edef is defined to have one parameter delimited with

& \end{〈current env.’s name〉}
 /oldmc@def&
 /oldmc@end]&
]

 \def\gmd@oldmcfinis{%
 \def\gmu@tempa{\end{\@currenvir}}%
 \@xa\gmu@tempa\@xa\def\@xa\gmd@lastenvir\@xa{\@currenvir}%
 \@xa\CodeDelim\@xa⋆\stored@code@delim
 \gmd@mchook}% see line

 \def\OldMacrocodes{%
 \let\macrocode\oldmc
 \n@melet{macrocode⋆}{oldmc⋆}}

To handle DocStrip directives in the code (in the old macrocodes case that is).

 \foone{\catcode`\%\active}
 {\def\docstrips@percent{\catcode`\%\active
 \let%\gmd@codecheckifds}}

Thepoint is, the active%will be expandedwhen just after it is the\gmd@charbychar
cs token and next is some char, the ^^B code delimiter at least. So, if that char is <, we
wish to launch DocStrip directive typesetting. (Thanks to \ttverbatim all the < are
‘other’.)

 \def\gmd@codecheckifds##{% note that# is just to gobble \gmd@charbychar
token.

 \typeout{@@@@@␣codecheckifds␣hash␣:␣»\unexpanded{#}«,␣:␣»%
\unexpanded{#}«}%

 \ifnum␣␣\if@dsdir␣\else␣\fi\ifgmd@dsVerb␣\fi>\z@
 \afterfi{%
 \gmd@dsChecker{%
 \if\@nx<\@nx#\afterfi\gmd@docstripdirective
 \else\afterfi{\xiipercent##}%
 \fi}% of the checker’s arg
 }% of \afterfi
 \else\afterfi{\xiipercent##}%
 \fi}

Almost the samewedowith themacro[⋆] environments, stating only their argumentmacro
to be processed as the ‘def’ entry. Of course, we should re\catcode it first.

 \newenvironment{macro}{%macro
 \@tempskipa=\MacroTopsep
 \if@codeskipput\advance\@tempskipa␣by-\CodeTopsep\fi
 \par\addvspace{\@tempskipa}\@codeskipputgtrue
 \begingroup\MakePrivateLetters\MakePrivateOthers% we make also

the ‘private others’ to cover the case of other sequence in the argument.
(We’ll use the \macro macro also in the environment for describing and
defining environments.)

 \gmd@ifonetoken\Hybrid@DefMacro\Hybrid@DefEnvir}%

endmacro

 {\par\addvspace\MacroTopsep\@codeskipputgtrue}

It came out that the doc’s author(s) give the macro environment also starred versions
of commands as argument. It’s OK since (the default version of) \MakePrivateLet¦
ters makes ⋆ a letter and therefore such a starred version is just one CS. However, in
doc.dtx occur macros that mark implicit definitions i.e., such that the defined CS is not
scanned in the subsequent code.

And for those who want to to use this environment for marking implicit definitions,macro⋆
define the star version:

 \@namedef{macro⋆}{\let\gmd@ifonetoken\@secondoftwo\macro}

endmacro*

 \@xa\let\csname␣endmacro⋆\endcsname\endmacro

Note that macro and macro⋆ have the same effect for more-than-one-token ar-
guments thanks to \gmd@ifonetoken’s meaning inside unstarred macro (it checks
whether the argument is one-token and if it isn’t, \gmd@ifonetoken switches execu-
tion to ‘other sequence’ path).

The two environments behave different only with a one-token argument: macro
postpones indexing it till the first scanned occurrence while macro⋆ till the first code
line met.

Now, let’s complete the details. First define an \if-like macro that turns true when
the string given to it consists of just one token (or one {〈text〉}, to tell the whole truth).

 \def\gmd@ifsingle##\@nil{%
 \def\gmu@tempa{#}%
 \ifx\gmu@tempa\@empty}

Note it expands to an open \if… test (unbalanced with \fi) so it has to be used
as all the \ifs, with optional \else and obligatory \fi. And cannot be used in the
possibly skipped branches of other \if…s (then it would result with ‘extra \fi/extra
\else’ errors). But the below usage is safe since both \gmd@ifsingle and its \else
and \fi are hidden in a macro (that will not be \expandaftered).

Note also that giving \gmd@ifsingle an \if… or so as the first token of the ar-
gument will not confuse TEX since the first token is just gobbled. The possibility of
occurrence of \if… or so as a not-first token seems to be negligible.

 \def\gmd@ifonetoken###{%
 \def\gmu@tempb{#}% We hide # from TEX in case it’s \if… or

so. \gmu@tempa is used in \gmd@ifsingle.
 \gmd@ifsingle#\@nil
 \afterfi{\@xa#\gmu@tempb}%
 \else
 \edef\gmu@tempa{\@xa\string\gmu@tempb}%
 \afterfi{\@xa#\@xa{\gmu@tempa}}%
 \fi}

Now, define the mysterious \Hybrid@DefMacro and \Hybrid@DefEnvir macros.
Theymark their argument with a certain subtlety: they put it in amarginpar at the point
where they are and postpone indexing it till the first scanned occurrence or just the first
code line met.

 \long\def\Hybrid@DefMacro#{%
 \Code@DefIndex{#}% this macro closes the group opened by \macro.
 \Text@MarginizeNext{⋆{#}}}
 \long\def\Hybrid@DefEnvir#{%
 \Code@DefIndexStar{#}% thismacro also closes the groupbegunby\macro.
 \Text@MarginizeNext{⋆{#}}}
 \long\def\Text@MarginizeNext#{%
 \gmd@evpaddonce{\Text@Marginize#\ignorespaces}}

The following macro adds its argument to \everypar using an auxiliary macro to
wrap the stuff in. The auxiliary macro has a self-destructor built in so it \relaxes itself
after first use.

 \long\def\gmd@evpaddonce#{%
 \global\advance\gmd@oncenum\@ne
 \@xa\long\@xa\edef%
 \csname␣gmd/evp/NeuroOncer\the\gmd@oncenum\endcsname{%
 \@nx\g@relaxen
 \csname␣gmd/evp/NeuroOncer\the\gmd@oncenum%

\endcsname}% Why does it work despite it shouldn’t? Because
when the CS got with \csname›…\endcsname is undefined, it’s
equivalent to \relax and therefore unexpandable. That’s why it
passes \edef and is able to be assigned.

 \@xa\addtomacro\csname␣gmd/evp/NeuroOncer\the\gmd@oncenum%
\endcsname{#}%

 \@xa\addto@hook\@xa\everypar\@xa{%
 \csname␣gmd/evp/NeuroOncer\the\gmd@oncenum\endcsname}%
 }
 \newcount\gmd@oncenum\gmd@oncenum

Wrapping a description and definition of an environment in a macro environmentenvironment

would look inappropriate (‘zgrzytało by’ in Polish) although there’s no TEXnical obstacle
to do so. Therefore we define the environment, because of æ sthetic and psychological
reasons.

 \@xa\let\@xa\environment\csname␣macro⋆\endcsname
 \@xa\let\@xa\endenvironment\csname␣endmacro⋆\endcsname

Index exclude list

We want some CSes not to be indexed, e.g., the LATEX internals and TEX primitives.
doc takes \index@excludelist to be a \toks register to store the list of expelled

CSes. Here we’ll deal another way. For each CS to be excluded we’ll make (\let, to be
precise) a control sequence and thenwe’ll be checking if it’s undefined (\ifx-equivalent
to \relax).

 \def\DoNotIndex{\bgroup\MakePrivateLetters\DoNot@Index}

 \long\def\DoNot@Index#{\egroup% we close the group,
 \let\gmd@iedir\gmd@justadot% we declare the direction of the 〈?〉cluding

to be excluding. We act this way to be able to reverse the exclusions easily
later.

 \dont@index#.}

 \long\def\dont@index#{%
 \def\gmu@tempa{\@nx#}% My TEX Guru’s trick to deal with \fi and such,

i.e., to hide from TEX when it is processing a test’s branch without expand-
ing.

 \if\gmu@tempa.% a dot finishes expelling
 \else
 \if\gmu@tempa,% The list this macro is put before may contain commas and

that’s O.K., we just continue the work.
 \afterfifi\dont@index
 \else% what is else shall off the Index be expelled.
 {\escapechar\m@ne
 \xdef\gmu@tempa{\string#␣}}% its to sound with \detokenizes

in tests.
 \@xa\let%
 \csname␣gmd/iexcl/\gmu@tempa\endcsname=\gmd@iedir% In the de-

fault case explained e.g. by themacro’s name, the lastmacro’smeaning
is such that the test in line will turn false and the subject CS shall
not be indexed. We \let not \def to spare TEX’s memory.

 \afterfifi\dont@index
 \fi
 \fi}

Let’s now give the exclude list copied ˜verbatim ;-) from doc.dtx. I give it in the code
layer because I suppose one will document not LATEX source but normal packages.

 \DoNotIndex\{ \DoNotIndex\}% the index entries of these two CSes would be
rejected by MakeIndex anyway.

 \begin{MakePrivateLetters}% Yes, \DoNotIndex does \MakePrivateLet¦
ters on its own but No, it won’t have any effect if it’s given in another macro’s
\def.

 \gdef\DefaultIndexExclusions{%\DefaultIndexExclusions

 This idea comes from Marcin Woliński.

 \DoNotIndex{\@ \@@par \@beginparpenalty \@empty}%
 \DoNotIndex{\@flushglue \@gobble \@input}%
 \DoNotIndex{\@makefnmark \@makeother \@maketitle}%
 \DoNotIndex{\@namedef \@ne \@spaces \@tempa}%
 \DoNotIndex{\@tempb \@tempswafalse \@tempswatrue}%
 \DoNotIndex{\@thanks \@thefnmark \@topnum}%
 \DoNotIndex{\@@ \@elt \@forloop \@fortmp \@gtempa

\@totalleftmargin}%
 \DoNotIndex{\" \/ \@ifundefined \@nil \@verbatim

\@vobeyspaces}%
 \DoNotIndex{\| \~ \ \active \advance \aftergroup \begingroup

\bgroup}%
 \DoNotIndex{\mathcal \csname \def \documentstyle \dospecials

\edef}%
 \DoNotIndex{\egroup}%
 \DoNotIndex{\else \endcsname \endgroup �endinput

\endtrivlist}%
 \DoNotIndex{\expandafter \fi \fnsymbol \futurelet \gdef

\global}%
 \DoNotIndex{\hbox \hss \if \if@inlabel \if@tempswa

\if@twocolumn}%
 \DoNotIndex{\ifcase}%
 \DoNotIndex{\ifcat \iffalse \ifx \ignorespaces \index \input

\item}%
 \DoNotIndex{\jobname \kern \leavevmode \leftskip \let \llap

\lower}%
 \DoNotIndex{\m@ne \next \newpage \nobreak \noexpand

\nonfrenchspacing}%
 \DoNotIndex{\obeylines \or \protect \raggedleft \rightskip \rm

\sc}%
 \DoNotIndex{\setbox \setcounter \small \space \string

\strut}%
 \DoNotIndex{\strutbox}%
 \DoNotIndex{\thefootnote \thispagestyle \topmargin \trivlist

\tt}%
 \DoNotIndex{\twocolumn \typeout \vss \vtop \xdef \z@}%
 \DoNotIndex{\, \@bsphack \@esphack \@noligs \@vobeyspaces

\@xverbatim}%
 \DoNotIndex{\` \catcode \end \escapechar \frenchspacing

\glossary}%
 \DoNotIndex{\hangindent \hfil \hfill \hskip \hspace \ht \it

\langle}%
 \DoNotIndex{\leaders \long \makelabel \marginpar \markboth

\mathcode}%
 \DoNotIndex{\mathsurround \mbox}% % \newcount \newdimen \newskip
 \DoNotIndex{\nopagebreak}%
 \DoNotIndex{\parfillskip \parindent \parskip \penalty \raise

\rangle}%
 \DoNotIndex{\section \setlength \TeX \topsep \underline

\unskip}%
 \DoNotIndex{\vskip \vspace \widetilde \\ \% \@date \@defpar}%
 \DoNotIndex{\[\]}% see line .
 \DoNotIndex{\count@ \ifnum \loop \today \uppercase \uccode}%

 \DoNotIndex{\baselineskip \begin \tw@}%
 \DoNotIndex{\a \b \c \d \e \f \g \h \i \j \k \l \m \n \o \p \q}%
 \DoNotIndex{\r \s \t \u \v \w \x \y \z \A \B \C \D \E \F \G \H}%
 \DoNotIndex{\I \J \K \L \M \N \O \P \Q \R \S \T \U \V \W \X \Y \Z}%
 \DoNotIndex{\ \ \ \ \ \ \ \ \ \}%
 \DoNotIndex{\! \# \ \& \' \(\) \. \: \; \< \= \> \? _}% \+ seems to

be so rarely used that it may be advisable to index it.
 \DoNotIndex{\discretionary \immediate \makeatletter

\makeatother}%
 \DoNotIndex{\meaning \newenvironment \par \relax

\renewenvironment}%
 \DoNotIndex{\repeat \scriptsize \selectfont \the

\undefined}%
 \DoNotIndex{\arabic \do \makeindex \null \number \show \write

\@ehc}%
 \DoNotIndex{\@author \@ehc \@ifstar \@sanitize \@title}%
 \DoNotIndex{\if@minipage \if@restonecol \ifeof \ifmmode}%
 \DoNotIndex{\lccode % %\newtoks
 \onecolumn \openin \p@ \SelfDocumenting}%
 \DoNotIndex{\settowidth \@resetonecoltrue \@resetonecolfalse

\bf}%
 \DoNotIndex{\clearpage \closein \lowercase \@inlabelfalse}%
 \DoNotIndex{\selectfont \mathcode \newmathalphabet

\rmdefault}%
 \DoNotIndex{\bfdefault}%

From the above list I removed some \new… declarations because I think it may
be useful to see gathered the special \new…s of each kind. For the same reason
I would not recommend excluding from the index such declarations as \AtBegin¦
Document, \AtEndDocument, \AtEndOfPackage, \DeclareOption, \DeclareRo¦
bustCommand etc. But the common definitions, such as \(new|provide)command and
\(e|g|x)defs, as the most common, in my opinion excluded should be.

And some my exclusions:

 \DoNotIndex{\@@input \@auxout \@currentlabel \@dblarg}%
 \DoNotIndex{\@ifdefinable \@ifnextchar \@ifpackageloaded}%
 \DoNotIndex{\@indexfile \@let@token \@sptoken \^}% the latter comes

from CSes like \^^M, see sec. .
 \DoNotIndex{\addto@hook \addvspace}%
 \DoNotIndex{\CurrentOption}%
 \DoNotIndex{\emph \empty \firstofone}%
 \DoNotIndex{\font \fontdimen \hangindent \hangafter}%
 \DoNotIndex{\hyperpage \hyperlink \hypertarget}%
 \DoNotIndex{\ifdim \ifhmode \iftrue \ifvmode

\medskipamount}%
 \DoNotIndex{\message}%
 \DoNotIndex{\NeedsTeXFormat \newcommand \newif}%
 \DoNotIndex{\newlabel}%
 \DoNotIndex{\of}%
 \DoNotIndex{\phantom \ProcessOptions \protected@edef}%
 \DoNotIndex{\protected@xdef \protected@write}%
 \DoNotIndex{\ProvidesPackage \providecommand}%
 \DoNotIndex{\raggedright}%

 \DoNotIndex{\raisebox \refstepcounter \ref \rlap}%
 \DoNotIndex{\reserved@a \reserved@b \reserved@c

\reserved@d}%
 \DoNotIndex{\stepcounter \subsection \textit \textsf \thepage

\tiny}%
 \DoNotIndex{\copyright \footnote \label \LaTeX}%
 \DoNotIndex{\@eha \@endparenv \if@endpe \@endpefalse

\@endpetrue}%
 \DoNotIndex{\@evenfoot \@oddfoot \@firstoftwo

\@secondoftwo}%
 \DoNotIndex{\@for \@gobbletwo \@idxitem \@ifclassloaded}%
 \DoNotIndex{\@ignorefalse \@ignoretrue \if@ignore}%
 \DoNotIndex{\@input@ \@input}%
 \DoNotIndex{\@latex@error \@mainaux \@nameuse}%
 \DoNotIndex{\@nomath \@oddfoot}% %\@onlypreamble should be indexed

IMHO.
 \DoNotIndex{\@outerparskip \@partaux \@partlist \@plus}%
 \DoNotIndex{\@sverb \@sxverbatim}%
 \DoNotIndex{\@tempcnta \@tempcntb \@tempskipa \@tempskipb}%

I think the layout parameters even the kernel, should not be excluded:
% \@topsep \@topsepadd \abovedisplayskip \clubpenalty etc.

 \DoNotIndex{\@writeckpt}%
 \DoNotIndex{\bfseries \chapter \part \section \subsection}%
 \DoNotIndex{\subsubsection}%
 \DoNotIndex{\char \check@mathfonts \closeout}%
 \DoNotIndex{\fontsize \footnotemark \footnotetext

\footnotesize}%
 \DoNotIndex{\g@addto@macro \hfilneg \Huge \huge}%
 \DoNotIndex{\hyphenchar \if@partsw \IfFileExists }%
 \DoNotIndex{\include \includeonly \indexspace}%
 \DoNotIndex{\itshape \language \LARGE \Large \large}%
 \DoNotIndex{\lastbox \lastskip \m@th \makeglossary}%
 \DoNotIndex{\maketitle \math@fontsfalse \math@fontstrue

\mathsf}%
 \DoNotIndex{\MessageBreak \noindent \normalfont

\normalsize}%
 \DoNotIndex{\on@line \openout \outer}%
 \DoNotIndex{\parbox \part \rmfamily \rule \sbox}%
 \DoNotIndex{\sf@size \sffamily \skip}%
 \DoNotIndex{\textsc \textup \toks@ \ttfamily \vbox}%

%%␣\DoNotIndex{\begin⋆} maybe in the future, if the idea gets popular…
 \DoNotIndex{\hspace⋆ \newcommand⋆ \newenvironment⋆

\providecommand⋆}%
 \DoNotIndex{\renewenvironment⋆ \section⋆ \chapter⋆}%
 }% of \DefaultIndexExclusions.

I put all the expellings into a macro because I want them to be optional.

 \end{MakePrivateLetters}

And we execute it due to the (lack of) counter-corresponding option:

 \if@indexallmacros\else
 \DefaultIndexExclusions
 \fi

If we expelled so many CSes, someone may like it in general but he/she may need
one or two expelled to be indexed back. So

 \def\DoIndex{\bgroup\MakePrivateLetters\Do@Index}

 \long\def\Do@Index#{\egroup\@relaxen\gmd@iedir\dont@index#.}% note
we only redefine an auxiliary CS and launch also \dont@index inner macro.

And if a user wants here make default exclusions and there do not make them,
they may use the \DefaultIndexExclusions declaration themself. This declaration
OCSR, but anyway let’s provide the counterpart. It OCSR, too.

 \def\UndoDefaultIndexExclusions{%
 \Store@Macro\DoNotIndex
 \let\DoNotIndex\DoIndex
 \DefaultIndexExclusions
 \Restore@Macro\DoNotIndex}

Index parameters

“The \IndexPrologue macro is used to place a shortmessage into the document above
the index. It is implemented by redefining \index@prologue, a macro which holds
the default text. We’d better make it a \long macro to allow \par commands in its
argument.”

 \long\def\IndexPrologue#{\@bsphack\def\index@prologue{#}%
\@esphack}

 \def\indexdiv{\@ifundefined{chapter}{\section⋆}{\chapter⋆}}

 \@ifundefined{index@prologue}␣{\def\index@prologue{\indexdiv{%
Index}%

 \markboth{Index}{Index}%
 Numbers␣written␣in␣italic␣refer␣to␣the␣\if@pageindex␣

pages␣\else
 code␣lines␣\fi␣where␣the
 corresponding␣entry␣is␣described;␣numbers␣underlined␣

refer␣to␣the
 \if@pageindex\else␣code␣line␣of␣the␣\fi␣definition;␣

numbers␣in
 roman␣refer␣to␣the␣\if@pageindex␣pages\else␣code␣lines␣%

\fi␣where
 the␣entry␣is␣used.
 \if@pageindex\else
 \ifx\HLPrefix\@empty
 The␣numbers␣preceded␣with␣`p.'␣are␣page␣numbers.
 \else␣The␣numbers␣with␣no␣prefix␣are␣page␣numbers.
 \fi\fi
 \ifx\IndexLinksBlack\relax\else
 All␣the␣numbers␣are␣hyperlinks.
 \fi
 \gmd@dip@hook% this hook is intended to let a user add something without

redefining the entire prologue, see below.
 }}{}

During the preparation of this package for publishing I needed only to add some-
thing at the end of the default index prologue. So

 \@emptify\gmd@dip@hook
 \long\def\AtDIPrologue#{\g@addto@macro\gmd@dip@hook{#}}

Now we can rollback the \ampulexdef made to \verb:
 \AtDIPrologue{%
 \ampulexdef\verb\ttverbatim\verbatim@specials
 {\ttverbatim\verbatim@specials}}

The Author(s) of doc assume multicol is known not to everybody. My assumption is
the other so

 \RequirePackage{multicol}
“If multicol is in use, when the index is started we compute the remaining space on

the current page; if it is greater than \IndexMin, the first part of the index will then be
placed in the available space. The number of columns set is controlled by the counter
\c@IndexColumns which can be changed with a \setcounter declaration.”

 \newdimen\IndexMin␣\IndexMin␣=␣pt\relax% originally it was set pt,\IndexMin
but with my default prologue there’s at least . cm needed to place the pro-
logue and some index entries on the same page.

 \newcount\c@IndexColumns␣\c@IndexColumns␣=␣\c@IndexColumns
 \renewenvironment{theindex}theindex
 {\begin{multicols}\c@IndexColumns[\index@prologue][%

\IndexMin]%
 \IndexLinksBlack
 \IndexParms␣\let\item\@idxitem␣\ignorespaces}%
 {\end{multicols}}
 \def\IndexLinksBlack{\hypersetup{linkcolor=black}}% TomakeAdobe

Reader work faster.
 \@ifundefined{IndexParms}
 {\def\IndexParms{%
 \parindent␣\z@
 \columnsep␣pt
 \parskip␣pt␣plus␣pt
 \rightskip␣pt
 \mathsurround␣\z@
 \parfillskip=-pt␣plus␣␣fil␣% doc defines this parameter rigid

but that’s because of the stretchable space (more precisely, a \dot¦
fill) between the item and the entries. But in gmdoc we define no
such special delimiters, so we add an infinite stretch.

 \small
 \def\@idxitem{\par\hangindent␣pt}%
 \def\subitem{\@idxitem\hspace⋆{pt}}%
 \def\subsubitem{\@idxitem\hspace⋆{pt}}%
 \def\indexspace{\par\vspace{pt␣plus␣pt␣minus␣pt}}%
 \ifx\EntryPrefix\@empty\else\raggedright\fi% long (actually, a quite

short but nonempty entry prefix)made space stretches so terribly large in
the justified paragraphs that we should make \raggedright rather.

 \ifnum\c@IndexColumns>\tw@\raggedright\fi% the numbers in nar-
row columns look betterwhen they are \raggedright inmy opinion.

 }}{}
 \def\PrintIndex{% we ensure the standardmeaning of the line end character not

to cause a disaster.

 \@ifQueerEOL{\StraightEOL\printindex\QueerEOL}%
 {\printindex}}

Remember that if you want to change not all the parameters, you don’t have to re-
define the entire \IndexParms macro but you may use a very nice LATEX command
\g@addto@macro (it has \global effect, also with an apeless name (\gaddtomacro)
provided by gmutils. (It adds its second argument at the end of definition of its first argu-
ment provided the first argument is a no-argument macro.) Moreover, gmutils provides
also \addtomacro that has the same effect except it’s not \global.

The DocStrip directives

 \foone{\@makeother\<\@makeother\>
 \glet\sgtleftxii=<}
 {
 \def\gmd@docstripdirective{%
 \begingroup\let\do=\@makeother
 \do\⋆\do\/\do\+\do\-\do\,\do\&\do\|\do\!\do\(\do\)\do\>\do%

\<%
 \@ifnextchar{<}{%
 \let\do=\@makeother␣\dospecials
 \gmd@docstripverb}
 {\gmd@docstripinner}}%

 \def\gmd@docstripinner#>{%
 \endgroup
 \def\gmd@modulehashone{%
 \Module{#}\space
 \@afternarrgfalse\@aftercodegtrue\@codeskipputgfalse}%
 \gmd@textEOL\gmd@modulehashone}

A word of explanation: first of all, we close the group for changed \catcodes; the
directive’s text has its \catcodes fixed. Then we put the directive’s text wrapped with
the formattingmacro into onemacro in order to give just one token the gmdoc’s TEX code
scanner. Then launch this big TEX code scanning machinery by calling \gmd@textEOL
which is an alias for the ‘narrative’ meaning of the line end. This macro opens the verba-
tim group and launches the char-by-char scanner. That is this scanner because of what
we encapsulated the directive’s text with the formatting into one macro: to let it pass
the scanner.

That’s why in the ‘old’ macrocodes case the active % closes the group before launch-
ing \gmd@docstripdirective.

The ‘verbatim’ directive macro works very similarly.

 }

 \foone{\@makeother\<\@makeother\>
 \glet\sgtleftxii=<
 \catcode`\^^M=\active}%
 {%
 \def\gmd@docstripverb<#^^M{%
 \endgroup%
 \def\gmd@modulehashone{%
 \ModuleVerb{#}\@afternarrgfalse\@aftercodegtrue%
 \@codeskipputgfalse}%

%% \global\gmd@dsVerbtrue% see below.

 \xdef\gmd@dsVerbDelim{\detokenize{#}}%
 \gmd@textEOL\gmd@modulehashone^^M}%
 }

 \edef\gmd@dsVerbDelim{\detokenize{%
#@#_()(_)⋆--^^A^^B}}

So far proper handling of the checks for the closing directive is too expensive to im-
plement so we only provide a macro to be put in a line before the closing directive.
The problem is of course with the verbatim commands that are very difficult to rescan
(\scantokens doesn’t do the job).

It’s not necessary to put it right before the line with the closing directive. The only
requirement is that the lines between this macro and the closing directive don’t contain
any recatcode’ing in the narration layer.

 \pdef\dsVerbClose{%
 \global\gmd@dsVerbtrue}

(˜Verbatim ;-) from doc:)

 \providecommand⋆\Module[]{{%\Module
 \mod@math@codes\langle\mathsf{#}\rangle}}

 \providecommand⋆\ModuleVerb[]{{%\ModuleVerb
 \mod@math@codes\langle\langle\mathsf{#}}}

 \def\ModuleVerbClose#{{%
 \xiipercent
 \mod@math@codes\mathsf{#}
 {\normalfont[\ds\␣verbatim␣closing␣dir.]}}}

 \def\mod@math@codes{\mathcode`\|="A␣\mathcode`\&="␣}

The changes history

The contents of this section was copied ˜verbatim from the doc’s documentation, with
only smallest necessary changes. Then my additions were added :-)) .

“To provide a change history log, the \changes command has been introduced.
This takes [one optional and] three [mandatory] arguments, respectively, [the macro
that’ll become the entry’s second level,] the version number of the file, the date of the
change, and some detail regarding what change has been made [i.e., the description of
the change]. The [second] of these arguments is otherwise ignored, but the others are
written out and may be used to generate a history of changes, to be printed at the end of
the document. [… I omit an obsolete remark about then-older MakeIndex’s versions.]

The output of the \changes command goes into the 〈Glossary_File〉 and therefore
uses the normal \glossaryentry commands. Thus MakeIndex or a similar program
can be used to process the output into a sorted “glossary”. The \changes command
commences by taking the usual measures to hide its spacing, and then redefines \pro¦
tect for use within the argument of the generated \indexentry command. We re-
code nearly all chars found in \@sanitize to letter since the use of special package
which make some characters active might upset the \changes command when writing
its entries to the file. However we have to leave % as comment and ␣ as 〈space〉 otherwise
chaos will happen. And, of course the \ should be available as escape character.”

We put the definition inside a macro that will be executed by (the first use of)
\RecordChanges. And we provide the default definition of \changes as a macro
just gobbling its arguments. We do this to provide no changes’ writing out if \Record¦
Changes is not used.

 \def\gmd@DefineChanges{%
 \outer\long\def\changes{%
 \gmd@changes@init
 \changes@}}

 \def\gmd@changes@init{%
 \@bsphack\begingroup\@sanitize
 \catcode`\\\z@␣\catcode`\␣␣\MakePercentIgnore
 \catcode`\^=
 \MakePrivateLetters␣\StraightEOL
 \MakeGlossaryControls}

 \newcommand\changes[][]{\PackageWarningNoLine{gmdoc}{%\changes
 ^^JThe␣\bslash␣changes␣command␣used␣\on@line
 ^^Jwith␣no␣\string\RecordChanges\space␣declared.
 ^^JI␣shall␣not␣warn␣you␣again␣about␣it}%
 \renewcommand\changes[][]{%\changes
 }}

 \def\MakeGlossaryControls{%
 \edef\actualchar{\string=}\edef\quotechar{\string!}%
 \edef\levelchar{\string>}\edef\encapchar{\xiiclub}}% for the glos-

sary the ‘actual’, the ‘quote’ and the ‘level’ chars are respectively =, ! and >,
the ‘encap’ char remains untouched. I decided to preserve the doc’s settings
for the compatibility.

 \newcommand\changes@[][\generalname]{%\changes@
 \if@RecentChange{#}% if the date is later than the one stored in \c@Chang¦

% esStartDate,
 \@tempswafalse
 \ifx\generalname#% then we check whether a CS-entry is given in the op-

tional first argument or is it unchanged.
 \ifx\last@defmark\relax\else% if no particular CS is specified in #,

we check whether \last@defmark contains something and if so, we
put it into \gmu@tempb scratch macro.

 \@tempswatrue
 \edef\gmu@tempb{% it’s a bug fix: while typesetting traditional .dtxes,

% \last@defmark came out with \ at the beginning (which re-
sulted with \\〈name〉 in the change log) but while typesetting the
‘new’ way, it occurred without the bslash. So we gobble the bslash
if it’s present and two lines below we handle the exception of
% \last@defmark = {\} (what would happen if a definition of
% \\ was marked in new way gmdocing).

 \if\bslash\last@defmark\else\last@defmark\fi}%
 \ifx\last@defmark\bslash\let\gmu@tempb\last@defmark%

\fi%
 \n@melet{gmd@glossCStest}{gmd/isaCS/\last@defmark}%
 \fi
 \else% the first argument isx not \generalname i.e., a particular CS is spec-

ified by it (if some day one wishes to \changes \generalname, they
should type \changes[generalname]…)

 \@tempswatrue
 {\escapechar\m@ne
 \xdef\gmu@tempb{\string#}}%

 \if\bslash\@xa\@firstofmany\string#\relax\@nil% we check
whether # is a CS…

 \def\gmd@glossCStest{}% … and tell the glossary if so.
 \fi
 \fi
 \@ifundefined{gmd@glossCStest}{\def\gmd@glossCStest{}}{}%
 \protected@edef\gmu@tempa{\@nx\gmd@glossary{%
 \if\relax\GeneralName\relax\else
 \GeneralName% it’s for the\DocInclude case to precede every\changes

of the same file with the file name, cf. line .
 \fi
 #\levelchar%
 \if@tempswa% If the macro \last@defmark doesn’t contain any CS

name (i.e., is empty) nor # specifies a CS, the current changes entry
was done at top-level. In this case we precede it by \generalname.

 \gmu@tempb
 \actualchar\bslash␣verb⋆%
 \if\verbatimchar\gmu@tempb\else\verbatimchar\fi
 \if\gmd@glossCStest\quotechar\bslash\fi␣\gmu@tempb
 \if\verbatimchar\gmu@tempb\else\verbatimchar\fi
 \else
 \space\actualchar\generalname
 \fi
 :\levelchar%
 #%
 }}%
 \gmu@tempa
 \grelaxen\gmd@glossCStest
 \fi% of \if@recentchange
 \endgroup\@esphack}

Let’s initialise \last@defmark and \GeneralName.

 \@relaxen\last@defmark
 \@emptify\GeneralName

 \def\ChangesGeneral{\grelaxen\last@defmark}% If automatic detection of
definitions is on, the default entry of\changes is themeaning of\last@defmark,
the last detected definiendum that is. The declaration defined here serves to
start a scope of ‘general’ \changes’ entries.

 \AtBegInput{\ChangesGeneral}

Let’s explain \if@RecentChange. We wish to check whether the change’s date
is later than date declared (if any limit date was declared). First of all, let’s establish
a counter to store the declared date. The untouched counters are equal so if no date is
declared there’ll be no problem. The date will have the 〈YYYYMMDD〉 shape both to
be easily compared and readable.

 \newcount\c@ChangesStartDate\c@ChangesStartDate

 \def\if@RecentChange#{%
 \gmd@setChDate#\@nil\@tempcnta
 \ifnum\@tempcnta>\c@ChangesStartDate}

 \def\gmd@setChDate#/#/#\@nil#{% the last parameter will be a \count
register.

 #=\numexpr#⋆\@M+#⋆+#\relax

(//, changed:) from TEX’s arithmetic to \numexpr

 }

Having the test defined, let’s define the command setting the date counter. # is to
be the version and # the date {〈year〉/〈month〉/〈day〉}.

 \def\ChangesStart##{%
 \gmd@setChDate#\@nil\c@ChangesStartDate
 \typeout{^^JPackage␣gmdoc␣info:␣^^JChanges'␣start␣date␣#␣

memorised
 as␣\string<\the\c@ChangesStartDate\string>␣\on@line.^^J}
 \advance\c@ChangesStartDate\m@ne% we shall show the changes at the spec-

ified day and later.
 \ifnum\c@ChangesStartDate>␣% see below.
 \edef\gmu@tempa{%
 \@nx\g@addto@macro\@nx\glossary@prologue{%
 The␣changes
 \if\relax\GeneralName\relax\else␣of␣\GeneralName%

\space\fi
 earlier␣than
 #␣\if\relax#\relax␣#\else(#)\fi\space␣are␣not␣

shown.}}%
 \gmu@tempa
 \fi}

(Explanation to line .) My TEX Guru has remarked that the change history tool
should be used for documenting the changes that may be significant for the users not
only for the author and talking of whatmay be significant to the user, no changes should
be hidden since the first published version. However, the changes’ start date may be
used to provide hiding the author’s ‘personal’ notes: they should only date the ‘public’
changes with the four digit year and the ‘personal’ ones with two digit year and set
\ChangesStart{}{//} or so.

In line I establish a test value that corresponds to a date earlier than any TEX
stuff and is not too small (early) to ensure that hiding the two digit year changes shall
not be mentioned in the changes prologue.

“The entries [of a given version number] are sorted for convenience by the name
of [the macro explicitly specified as the first argument or] the most recently introduced
macro name (i.e., that in themost recent \begin{macro} command [or \Define]). We
therefore provide [\last@defmark] to record that argument, and provide a default
definition in case \changes is used outside a macro environment. (This is a wicked
hack to get such entries at the beginning of the sorted list! It works providing no macro
names start with ! or ".)

This macro holds the string placed before changes entries on top-level.”

 \def\generalname{General}

“To cause the changes to be written (to a .glo) file, we define \RecordChanges to
invoke LATEX’s usual \makeglossary command.”

I add to it also the\writeing definition of the\changesmacro to ensure no changes
are written out without \RecordChanges.

 \def\RecordChanges{\makeglossary\gmd@DefineChanges

 DEK writes in TEX, The Program of September as the date of TEX Version .

 \@relaxen\RecordChanges}

“The remaining macros are all analogues of those used for the theindex environ-
ment. When the glossary is startedwe compute the spacewhich remains at the bottomof
the current page; if this is greater than \GlossaryMin then the first part of the glossary
will be placed in the available space. The number of columns set [is] controlled by the
counter \c@GlossaryColumns which can be changed with a \setcounter declara-
tion.”

 \newdimen\GlossaryMin \GlossaryMin = pt\GlossaryMin

c@GlossaryColumns

 \newcount\c@GlossaryColumns \c@GlossaryColumns = \c@GlossaryColumns

“The environment theglossary is defined in the same manner as the theindex
environment.”

 \newenvironment{theglossary}{%theglossary
 \begin{multicols}\c@GlossaryColumns
 [\glossary@prologue][\GlossaryMin]%
 \GlossaryParms␣\IndexLinksBlack
 \let\item\@idxitem␣\ignorespaces}%
 {\end{multicols}}

Here is the MakeIndex style definition:

 〈/ doc〉
 〈gmglo〉 preamble
 〈gmglo〉 "\n␣\\begin{theglossary}␣\n
 〈gmglo〉 \\makeatletter\n"
 〈gmglo〉 postamble
 〈gmglo〉 "\n\n␣\\end{theglossary}\n"
 〈gmglo〉 keyword␣"\\glossaryentry"
 〈gmglo〉 actual␣'='
 〈gmglo〉 quote␣'!'
 〈gmglo〉 level␣'>'
 〈⋆doc〉

The MakeIndex shell command for the glossary should look as follows:

makeindex␣-r␣-s␣gmglo.ist␣-o␣〈myfile〉.gls␣〈myfile〉.glo

where -r commands MakeIndex not to make implicit page ranges, -s commands
MakeIndex to use the style stated next not the default settings and the -o option with
the subsequent filename defines the name of the output.

“The \GlossaryPrologue macro is used to place a short message above the glos-
sary into the document. It is implemented by redefining \glossary@prologue, a
macro which holds the default text. We better make it a long macro to allow \par
commands in its argument.”

 \long\def\GlossaryPrologue#{\@bsphack
 \def\glossary@prologue{#}%
 \@esphack}

“Now we test whether the default is already defined by another package file. If not
we define it.”

 \@ifundefined{glossary@prologue}
 {\def\glossary@prologue{\indexdiv{{Change␣History}}%

 \markboth{{Change␣History}}{{Change␣History}}%
 }}{}

“Unless the user specifies otherwise, we set the change history using the same pa-
rameters as for the index.”

 \AtBeginDocument{%
 \@ifundefined{GlossaryParms}{\let\GlossaryParms%\GlossaryParms

\IndexParms}{}}

“To read in and print the sorted change history, just put the \PrintChanges com-
mand as the last (commented-out, and thus executed during the documentation pass
through the file) command in your package file. Alternatively, this command may form
one of the arguments of the \StopEventually command, although a change history
is probably not required if only the description is being printed. The command assumes
that MakeIndex or some other program has processed the .glo file to generate a sorted
.gls file.”

 \def\PrintChanges{% to avoid a disaster among queer EOLs:\PrintChanges
 \@ifQueerEOL
 {\StraightEOL\@input@{\jobname.gls}\QueerEOL}%
 {\@input@{\jobname.gls}}%
 \g@emptify\PrintChanges}

 \pdef\toCTAN{%
% # 〈year/month/day〉␣〈version number〉

 \gmd@changes@init
 \gmd@toCTAN@}

 \def\gmd@toCTAN@#{%
 \edef\gmu@tempa{\gmd@chgs@parse#␣\@nil}%
 \edef\gmu@tempa{%
 \unexpanded{\changes@[\generalname]}%
 {\@xa\@firstofthree\gmu@tempa}%
 {\@xa\@secondofthree\gmu@tempa}%
 {put␣to␣\acro{CTAN}␣on␣\@xa\@secondofthree\gmu@tempa}}%
 \gmu@tempa}

To make writing changes easier, to allow copying the date & version string from the
\ProvidesPackage/Class optional argument.

 \outer\pdef\chgs{\gmd@changes@init\gmd@chgs}

 \DeclareCommand\gmd@chgs{%\gmd@chgs
 o␣% the optional CS the change refers to
 >!m␣% change’s date, version and text
 }{%
 \IfValueTF{#}{%
 \edef\gmu@tempa{\@nx\changes@[\unexpanded{#}]%
 \@xa\unexpanded\@xa{\gmd@chgs@parse#\@nil}}}%
 {\edef\gmu@tempa{\@nx\changes@
 \@xa\unexpanded\@xa{\gmd@chgs@parse#\@nil}}}%
 \gmu@tempa}% of \gmd@chgs

 \long\def\gmd@chgs@parse#␣#␣#\@nil{{#}{#}{#}}%

 \outer\pdef\CH{%
 \gmd@changes@init\gmd@chgsplus}

 \DeclareCommand\gmd@chgsplus{\SameAs\gmd@chgs}{%\gmd@chgsplus
 \DCUse\gmd@chgs{#}{#}%
 \gmd@threeway{#}#\@nil
 }

This is just formatting of the main

 \long\def\gmd@threeway
 #% opt. CS that \CH refers to
 #␣% (delimd. with a blank) date
 #␣% (delimd. with a blank) version
 #\@nil␣% text
 {%
 \par␣(#,␣#\IfValueT{#}{,␣\texttt{\detokenize\@xa{%

\string#}}}:)
 #\scantokens{}% to provide proper line end which’ll take care of \par &c.
 }

The checksum

doc provides a checksum mechanism that counts the backslashes in the scanned code.
Let’s do almost the same.

At the beginning of the source file youmay put the \CheckSum macrowith a number
(in one of TEX’s formats) as its argument and TEX with gmdoc shall count the number of
the escape chars in the source file and tell you in the .log file (and on the terminal) whether
you have typed the right number. If you don’t type \CheckSum, TEX anyway will tell
you how much it is.

 \newcount\check@sum\check@sum

 \def\CheckSum#{\@bsphack\global\check@sum#\relax\@esphack}

 \newcounter{CheckSum}CheckSum

 \newcommand⋆\step@checksum{\stepcounter{CheckSum}}\step@checksum

And we’ll use it in the line (\stepcounter is \global). See also the
\chschange declaration, l. .

However, the check sum mechanism in gmdoc behaves slightly different than in doc
which is nicely visible while gmdocing doc: doc states its check sum to be and our
count counts . The mystery lies in the fact that doc’s CheckSum mechanism counts
the code’s backslashes no matter what they mean and the gmdoc’s the escape chars so,
among others, \\ at the default settings increases doc’s CheckSumby while the gmdoc’s
by . (There are occurrences of \\ in doc.dtx macrocodes, I counted myself.)

“But \Finale will be called at the very end of a file. This is exactly the point were
we want to know if the file is uncorrupted. Therefore we also call \check@checksum
at this point.”

In gmdoc we have the \AtEndInput hook.

 \AtEndInput{\check@checksum}

Based on the lines – of doc.dtx.

 \def\check@checksum{\relax
 \ifnum\check@sum=\z@
 \edef\gmu@tempa{% why \edef—see line

 My opinion is that nowadays a check sum is not necessary for checking the completeness of a file
but I like it as a marker of file development and this more than that is its rôle in gmdoc.

 \@nx\typeout{⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆^^J%
 ⋆␣The␣input␣file␣\gmd@inputname\space␣has␣no␣Checksum
 stated.^^J%
 ⋆␣The␣current␣checksum␣is␣\the\c@CheckSum.^^J%
 \gmd@chschangeline% a check sum changes history entry, see below.
 ⋆␣(package␣gmdoc␣info.)^^J%
 ⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆^^J}}
 \else
 \ifnum\check@sum=\c@CheckSum
 \edef\gmu@tempa{%
 \@nx\typeout{⋆⋆⋆⋆⋆+⋆+⋆+⋆+⋆+⋆+⋆+⋆+⋆+⋆+^^J%
 ⋆␣The␣input␣file␣\gmd@inputname:␣Checksum␣

passed.^^J%
 \gmd@chschangeline
 ⋆␣(package␣gmdoc␣info.)^^J%
 ⋆⋆⋆⋆⋆+⋆+⋆+⋆+⋆+⋆+⋆+⋆+⋆+⋆+^^J}}
 \else
 \edef\gmu@tempa{%
 \@nx\typeout{⋆⋆⋆⋆⋆⋆⋆⋆\gmd@wykrzykniki^^J%
 ⋆!␣The␣input␣file␣\gmd@inputname:^^J%
 ⋆!␣The␣CheckSum␣stated:␣\the\check@sum\space<>␣my
 count:␣\the\c@CheckSum.^^J%
 \gmd@chschangeline
 ⋆!␣(package␣gmdoc␣info.)^^J%
 ⋆⋆⋆⋆⋆⋆⋆⋆\gmd@wykrzykniki^^J}}%
 \fi
 \fi
 \gmu@tempa
 \@xa\AtEndDocument\@xa{\gmu@tempa}% we print the checksum notifica-

tion on the terminal immediately and at end of TEXing not to have to scroll
the output far nor search the log.

 \global\check@sum\z@}

 \def\gmd@wykrzykniki{!␣!␣!␣!␣!␣!␣!␣!␣!␣!␣!␣!}

to be able to change it when we don’t want X ETEX to finish with Code what usually
breaks make.

As I mentioned above, I use the check sum mechanism to mark the file growth.
Therefore I provide a macro that produces a line on the terminal to be put somewhere
at the beginning of the source file’s commentary for instance.

 \def\gmd@chschangeline{%
 \xiipercent\space\string\chschange
 {\@ifundefined{fileversion}{v???}{\fileversion}}%
 {\the\year/\the\month/\the\day}%
 {\the\c@CheckSum}^^J%
 \xiipercent\space\string\chschange
 {\@ifundefined{fileversion}{v???}{\fileversion}}%
 {\@xa\@gobbletwo\the\year/\the\month/\the\day}%
 {% with two digit year in case you use \ChangesStart.
 \the\c@CheckSum}^^J}

And here the meaning of such a line is defined:

 \outer\pdef\chschange{%

% # m file version,
% # m date,
% (#) c hecksum,
% [#] o the reason of check sum change, possibly short.

 \@ifQueerEOL
 {\def\EOLwasQueer{}}{\def\EOLwasQueer{}}%
 \gmd@changes@init
 \chschange@}

 \DeclareCommand\chschange@{mmmo}{%\chschange@
 \changes@{#}{#}{CheckSum␣#
 \IfValueT{#}{because␣of␣#}%
 }% \csname… because \changes is \outer.
 \CheckSum{#}%
 \IfValueF{#}{%
 \if\EOLwasQueer
 \afterfi{%
 \@ifnextchar\par{%
 \@xa\gmd@textEOL\gobble}%
 {}%
 }% of \afterfi,
 \fi}% of no value of #,
 }% of \chschange@.
It willmake a ‘General’ entry in the change history unless used in some \Define’s scope
or inside a macro environment. It’s intended to be put somewhere at the beginning of
the documented file.

Macros from ltxdoc

I’mnot surewhether this package still remains ‘minimal’ but I liked themacros provided
by ltxdoc.cls so much…

The next page setup declaration is intended to be usedwith the article’s default Letter
paper size. But since

 \newcommand⋆\ltxPageLayout{%\ltxPageLayout

“Increase the text width slightly so that width the standard fonts columns of code
may appear in a macrocode environment.”

 \setlength{\textwidth}{pt}%

“Increase the marginpar width slightly, for long command names. And increase the
left margin by a similar amount.”

To make these settings independent from the defaults (changed e.g. in gmdocc.cls)
we replace the original \addtolengths with \setlengths.

 \setlength\marginparwidth{pt}%
 \setlength\oddsidemargin{pt}%
 \setlength\evensidemargin{pt}}

\DocInclude and the ltxdoc-like setup

Let’s provide a command for including multiple files into one document. In the ltxdoc
class such a command is defined to include files as parts. But we prefer to include them
as chapters in the classes that provide \chapter. We’ll redefine \maketitle so that

it make a chapter or a part heading unlike in ltxdoc where the file parts have their title
pages with only the filename and article-like titles made by \maketitle.

But we will also provide a possibility of typesetting multiple files exactly like with
the ltxdoc class.

So, define the \DocInclude command, that acts\DocInclude
“more or less exactly the same as \include, but uses \DocInput on a dtx [or .fdd]

file, not \input on a tex file.”
Our version will accept also .sty, .cls, and .tex files.

 \DeclareCommand\DocInclude{O{}mO{}}{%\DocInclude
% [#] o path (with closing slash), will not be printed
% # m file name without extension, will be printed
% [#] o file extension (with dot) if not .sty, .cls, .tex, .dtx nor .fdd

originally it took just one argument. Here we make it take two, first of which is
intended to be the path (with the closing /). This is intended not to print the
path in the page footers only the filename.

 \gdef\HLPrefix{\filesep}%\HLPrefix
 \gdef\EntryPrefix{\filesep}% we define two rather kernel parameters to

expand to the file marker. The first will bring the information to one of the
default \IndexPrologue’s \ifs. Therefore the definition is global. The
latter is such for symmetry.

 \def\GeneralName{#\actualchar\pk{#}␣}% for the changes’ historymain
level entry.

Nowwe check whether we try to include ourselves and if so—we’ll (create and) read
an .auxx file instead of (the main) .aux to avoid an infinite recursion of \inputs.

 \edef\gmd@jobname{\jobname}%
 \edef\gmd@difilename{% wewant the filename all ‘other’, just as in \job¦

name.
 \@xa\@xa\@xa\@gobble\@xa\string\csname#\endcsname}%
 \ifx\gmd@jobname\gmd@difilename
 \def\gmd@auxext{auxx}%
 \else
 \def\gmd@auxext{aux}%
 \fi
 \relax
 \clearpage
 \gmd@docincludeaux␣\def\currentfile{%

gmdoc-IncludeFileNotFound.}%
 \let\fullcurrentfile\currentfile
 \@ifnonempty{#}%
 {%
 \unless\if.\@firstofmany#\relax\@nil
 \PackageError{gmdoc}{Optional␣\xiihash␣of
 \string\DocInclude\space
 if␣present␣has␣to␣begin␣with␣a␣dot␣(.)}{}%
 \fi
 \edef\currentfile{##}%
 \IfFileExists{#\currentfile}{}%
 {\PackageError{gmdoc}{\string\DocInclude\space␣file
 \currentfile\space␣not␣found}{}}%
 }% of if extension given.
 {% if extension not given:

 \IfFileExists{##.fdd}{\edef\currentfile{#.fdd}}{% it’s not .fdd,
 \IfFileExists{##.dtx}{\edef\currentfile{#.dtx}}{% it’s not

.dtx either,
 \IfFileExists{##.sty}{\edef\currentfile{#.sty}}{% it’s

not .sty,
 \IfFileExists{##.cls}{\edef\currentfile{#.cls}}{% it’s

not .cls,
 \IfFileExists{##.tex}{\edef\currentfile{#.tex}}{%

% it’s not .tex,
 \IfFileExists{##.fd}{\edef\currentfile{#.fd}}{%

% so it must be .fd or error.
 \PackageError{gmdoc}{\string\DocInclude\space␣

file
 ##.fdd/dtx/sty/cls/tex/fd␣not␣found.}{}%
 }}}}}}%
 }% of if no extension given
 \edef\currentfile{\@xa\detokenize\@xa{\currentfile}}%
 \edef\fullcurrentfile{#\currentfile}%
 \ifnum\@auxout=\@partaux
 \@latexerr{\string\DocInclude\space␣cannot␣be␣nested}\@eha
 \else␣\@docinclude{#}##␣\fi}% Why is#delimitedwith␣not braced

as we are used to, one may ask.

 \def\@docinclude##␣{% To match the macro’s parameter string, is an answer.
But why is \@docinclude defined so? Originally, in ltxdoc it takes one ar-
gument and it’s delimited with a space probably in resemblance to the true
\input (\@@input in LATEX).

 \clearpage
 \if@filesw␣\gmd@writemauxinpaux{#.\gmd@auxext}\fi% this strange

macrowith a long name is another spurious thing to allow _ in the filenames
(see line). which are allowed anyway unless active or .

 \@tempswatrue
 \if@partsw␣\@tempswafalse\edef\gmu@tempb{#}%
 \@for␣\gmu@tempa:=\@partlist\do{\ifx\gmu@tempa\gmu@tempb%

\@tempswatrue\fi}%
 \fi
 \if@tempswa% the file is on \@partlist
 \let\@auxout\@partaux
 \if@filesw
 \immediate\openout\@partaux␣#.\gmd@auxext\relax% Yes, only

#. It’s to create and process the partial .aux(x) files always in the main
document’s (driver’s) directory.

 \immediate\write\@partaux{\relax}%
 \fi

“We need to save (and later restore) various index-related commands which might
be changed by the included file.”

 \StoringAndRelaxingDo\gmd@doIndexRelated
 \if@ltxDocInclude\part{\currentfile}% In the ltxdoc-like setup we

make a part title page with only the filename and the file’s \maketitle
will typeset an article-like title.

 \else\let\maketitle=\InclMaketitle

 \fi% In the default setupwe redefine \maketitle to typeset a common chap-
ter or part heading.

 \if@ltxDocInclude\xdef@filekey\fi
 \GetFileInfo{\currentfile}% it’s my (GM) addition with the account of

using file info in the included files’ title/ heading etc.
 \incl@DocInput{\fullcurrentfile}% originally just \currentfile.
 \if@ltxDocInclude\else\xdef@filekey\fi% in the default casewe add

new file to the file key after the input because in this case it’s the files own
\maketitle what launches the sectioning command that increases the
counter.

And here is the moment to restore the index-related commands.

 \RestoringDo\gmd@doIndexRelated
 \clearpage
 \gmd@writeckpt{##}%
 \if@filesw␣\immediate\closeout\@partaux␣\fi
 \else% the file isn’t on \@partlist
 \@nameuse{cp@##}%
 \g@emptify\gmd@ABIOnce
 \fi
 \let\@auxout\@mainaux}% end of \@docinclude.

(Two is a sufficient number of iterations to define a macro for.)

 \def\xdef@filekey{{\@relaxen\narrativett% This assignment is very trick-
ily crafted: it makes all \narrativetts present in the \filekey’s expansion
unexpandable not only the one added in this step.

 \xdef\filekey{\filekey,␣\thefilediv={\narrativett%
\currentfile}}}}

To allow _ in the filenames we must assure _ will be while reading the filename.
Therefore define

 \def\gmd@writemauxinpaux#{% this name comes from ‘write out to main .aux
to input partial .aux’.

We wrap \@input{〈partial .aux〉} in a _ hacked scope. This hack is especially
recommended here since the .aux file may contain a non-\global stuff that should not
be localised by a group that we would have to establish if we didn’t use the hack. (Hope
you understand it. If not, notify me and for now I’ll only give a hint: “Look at it with the
TEX’s eyes”. More uses of this hack are to be seen in gmutils where they are a bit more
explained.)

 \immediate\write\@mainaux{%
 \unexpanded{%
 \bgroup
 \@makeother_% to allow underscore
 \@makeother\~% to allow paths beginning with ~/
 \firstofone}{\egroup
 \string\@input{#}}}}

We also slightly modify a LATEX kernel macro \@writeckpt to allow _ in the file
name.

 \def\gmd@writeckpt#{%
 \immediate\write\@partaux{%
 \unexpanded{%

 \bgroup
 \@makeother_%
 \@makeother\~%
 \firstofone}\@charlb\egroup}%
 \@writeckpt{#}%
 \immediate\write\@partaux{\@charrb}}

 \def\gmd@doIndexRelated{%
 \do\tableofcontents␣\do\makeindex␣\do\EnableCrossrefs
 \do\PrintIndex␣\do\printindex␣\do\RecordChanges␣\do%

\PrintChanges
 \do\theglossary␣\do\endtheglossary}

 \@emptify\filesep

The ltxdoc class establishes a special number format for multiple file documentation
numbering needed to document the LATEX sources. I like it too, so

 \def\aalph#{\@aalph{\csname␣c@#\endcsname}}
 \def\@aalph#{%
 \ifcase#\or␣a\or␣b\or␣c\or␣d\or␣e\or␣f\or␣g\or␣h\or␣i\or
 j\or␣k\or␣l\or␣m\or␣n\or␣o\or␣p\or␣q\or␣r\or␣s\or
 t\or␣u\or␣v\or␣w\or␣x\or␣y\or␣z\or␣A\or␣B\or␣C\or
 D\or␣E\or␣F\or␣G\or␣H\or␣I\or␣J\or␣K\or␣L\or␣M\or
 N\or␣O\or␣P\or␣Q\or␣R\or␣S\or␣T\or␣U\or␣V\or␣W\or
 X\or␣Y\or␣Z\else\@ctrerr\fi}

A macro that initialises things for \DocInclude.

 \def\gmd@docincludeaux{%

We set the things for including the files only once.

 \global\@relaxen\gmd@docincludeaux

By default, wewill includemultiple files into one document as chapters in the classes
that provide \chapter and as parts elsewhere.

 \ifx\filediv\relax
 \ifx\filedivname\relax% (nor \filediv neither \filedivname is de-

fined by the user)
 \@ifundefined{chapter}{%
 \SetFileDiv{part}}%
 {\SetFileDiv{chapter}}%
 \else% (\filedivname is defined by the user, \filediv is not)
 \SetFileDiv{\filedivname}% why not? Inside is \edef so it’ll work.
 \fi
 \else% (\filediv is defined by the user
 \ifx\filedivname\relax% and \filedivname is not)
 \PackageError{gmdoc}{You've␣redefined␣\string\filediv%

\space
 without␣redefining␣\string\filedivname.}{Please␣

redefine␣the
 two␣macros␣accordingly.␣You␣may␣use␣\string%

\SetFileDiv{name
 without␣bslash}.}%
 \fi
 \fi

 \def\thefilediv{\aalph{\filedivname}}% Thefileswill be numberedwith
letters, lowercase first.

 \@xa\let\csname␣the\filedivname\endcsname=\thefilediv% This line
lets \the〈chapter〉 etc. equal \thefilediv.

 \def\filesep{\thefilediv-}% File separator (identifier) for the index.
 \let\filekey=\@gobble
 \g@addto@macro\index@prologue{%
 \gdef\@oddfoot{\parbox{\textwidth}{\strut\footnotesize
 \raggedright{\bfseries␣File␣Key:}␣\filekey}}% The footer for

the pages of index.
 \glet\@evenfoot\@oddfoot}% anyway, it’s intended to be oneside.
 \g@addto@macro\glossary@prologue{%
 \gdef\@oddfoot{\strut␣Change␣History\hfill\thepage}% The footer

for the changes history.
 \glet\@evenfoot\@oddfoot}%
 \gdef\@oddfoot{% The footer of the file pages will be its name and, if there is

a file info, also the date and version.
 \@xa\ifx\csname␣ver@\currentfile\endcsname\relax
 File␣\thefilediv:␣{\narrativett\currentfile}␣%
 \else
 \GetFileInfo{\currentfile}%
 File␣\thefilediv:␣{\narrativett\filename}␣%
 Date:␣\filedate\␣%
 Version␣\fileversion
 \fi
 \hfill\thepage}%
 \glet\@evenfoot\@oddfoot% see line .
 \@xa\def\csname\filedivname␣name\endcsname{File}% we redefine the

name of the proper division to ‘File’.
 \ifx\filediv\section
 \let\division=\subsection
 \let\subdivision=\subsubsection
 \let\subsubdivision=\paragraph

If \filediv is higher than \section we don’t change the three divisions (they are
\section, \subsection and \subsubsection by default). \section seems to me
the lowest reasonable sectioning command for the file. If \filediv is lower you should
rather rethink the level of a file in your documentation not redefine the two divisions.

 \fi}% end of \gmd@docincludeaux.

The \filediv and \filedivname macros should always be set together. Therefore
provide a macro that takes care of both at once. Its # should be a sectioning name
without the backslash.

 \def\SetFileDiv#{%
 \edef\filedivname{#}%
 \@xa\let\@xa\filediv\csname#\endcsname}

 \def\SelfInclude{\DocInclude{\jobname}}

The ltxdoc class makes some preparations for inputting multiple files. We are not
sure if the user wishes to use ltxdoc-like way of documenting (maybe they will prefer
what I offer, gmdocc.cls e.g.), so we put those preparations into a declaration.

 \newif\if@ltxDocInclude\if@ltxDocInclude

 \newcommand⋆\ltxLookSetup{%\ltxLookSetup
 \SetFileDiv{part}%
 \ltxPageLayout
 \@ltxDocIncludetrue
 }

 \@onlypreamble\ltxLookSetup

The default is thatwe \DocInclude the files due to the original gmdoc input settings.

 \let\incl@DocInput=\DocInput

 \@emptify\currentfile% for the pages outside the \DocInclude’s scope. In
force for all includes.

If you want to \Doc/SelfInclude doc-likes:

 \newcommand⋆\olddocIncludes{%\olddocIncludes
 \let\incl@DocInput=\OldDocInput}

And, if you have set the previous and want to set it back:

 \newcommand⋆\gmdocIncludes{%\gmdocIncludes
 \let\incl@DocInput=\DocInput
 \AtBegInput{\QueerEOL}}% to move back the \StraightEOL declaration

put at begin input by \olddocIncludes.

Redefinition of \maketitle
A not-so-slight alteration of the \maketitle command in order it allow multiple ti-\maketitle
tles in one document seems to me very clever. So let’s copy again (ltxdoc.dtx the lines
–):

“The macro to generate titles is easily altered in order that it can be used more than
once (an article with many titles). In the original, diverse macros were concealed after
usewith \relax. Wemust cancel anything that may have been put into \@thanks, etc.,
otherwise all titles will carry forward any earlier such setting!”

But here in gmdoc we’ll do it locally for (each) input not to change the main title
settings if there are any.

 \AtBegInput{%
 \providecommand⋆\maketitle{\par
 \begingroup␣\def␣\thefootnote␣{\fnsymbol␣{footnote}}%
 \setcounter␣{footnote}\z@
 \def\@makefnmark{\rlap{\@textsuperscript{\normalfont%

\@thefnmark}}}%
 \long\def\@makefntext##{\parindent␣em\noindent
 \hb@xt@.em{%
 \hss\@textsuperscript{\normalfont\@thefnmark}}##}%
 \if@twocolumn␣\twocolumn␣[\@maketitle␣]%
 \else␣\newpage␣\global␣\@topnum␣\z@␣\@maketitle␣\fi

“For special formatting requirements (such as in TUGboat), we use page style
titlepage for this; this is later defined to be plain, unless already defined, as, for
example, by ltugboat.sty.”

 \thispagestyle{titlepage}\@thanks␣\endgroup

“If the driver file documents many files, we don’t want parts of a title of one to prop-
agate to the next, so we have to cancel these:”

 \setcounter␣{footnote}\z@
 \gdef\@date{\today}\g@emptify\@thanks%
 \g@relaxen\@author\g@relaxen\@title%
 }%

“When a number of articles are concatenated into a journal, for example, it is not
usual for the title pages of such documents to be formatted differently. Therefore, a
class such as ltugboat can define this macro in advance. However, if no such definition
exists, we use page style plain for title pages.”

 \@ifundefined{ps@titlepage}{\let\ps@titlepage=\ps@plain}{}%

And let’s provide \@maketitle just in case: an error occurred without it at TEXing
withmwbk.cls because this class with the default options does not define \@maketitle.
The below definitions are taken from report.cls and mwrep.cls.

 \providecommand⋆\@maketitle{%
 \newpage\null␣\vskip␣em\relax%
 \begin{center}%
 \titlesetup
 \let␣\footnote␣\thanks
 {\LARGE␣\@title␣\par}%
 \vskip␣.em%
 {\large␣\lineskip␣.em%
 \begin{tabular}[t]{c}%
 \strut␣\@author
 \end{tabular}\par}%
 \vskip␣em%
 {\large␣\@date}%
 \end{center}%
 \par␣\vskip␣.em\relax}%

We’d better restore the primary meanings of the macros making a title. (LATEXε
source, File F: ltsect.dtx Date: // Version v.z, lines ...–.–.)

 \providecommand⋆\title[]{\gdef\@title{#}}\title
 \providecommand⋆\author[]{\gdef\@author{#}}\author
 \providecommand⋆\date[]{\gdef\@date{#}}\date
 \providecommand⋆\thanks[]{\footnotemark\thanks
 \protected@xdef\@thanks{\@thanks
 \protect\footnotetext[\the\c@footnote]{#}}%
 }%
 \providecommand⋆\and{% ␣%␣\begin{tabular}\and
 \end{tabular}%
 \hskip␣em␣\@plus.fil%
 \begin{tabular}[t]{c}}% ␣%␣\end{tabular}Andfinally, let’s initialise

\titlesetup if it is not yet.
 \providecommand⋆\titlesetup{}%\titlesetup
 }% end of \AtBegInput.

The ltxdoc class redefines the \maketitle command to allow multiple titles in one
document. We’ll do the same and something more: our \Doc/SelfInclude will turn
the file’s \maketitle into a part or chapter heading. But, if the \ltxLookSetup dec-
laration is in force, \Doc/SelfInclude will make for an included file a part’s title page
and an article-like title.

Let’s initialise the file division macros.

 \@relaxen\filediv
 \@relaxen\filedivname
 \@relaxen\thefilediv

If we don’t include files the ltxdoc-like way, we wish to redefine \maketitle so that
it typesets a division’s heading.

Now, we redefine \maketitle and its relatives.

 \def\InclMaketitle{%
 {\def\and{,␣}% we make \and just a comma.
 {\let\thanks=\@gobble% for the toc version of the heading we discard

\thanks.
 \protected@xdef\incl@titletotoc{%
 \@title\@ifauthor{%
 \protect\space(\@author)}{}}% we add the author iff the ‘files

have different authors’ and author exists (@variousauthors)
 }%
 \def\thanks##{\footnotemark
 \protected@xdef\@thanks{\@thanks% to keep the previous \thanks

if there were any.
 \protect\footnotetext[\the\c@footnote]{##}}}% for somemys-

terious reasons so defined \thanks do typeset the footnote mark
and text but they don’t hyperlink it properly. A hyperref bug?

 \@emptify\@thanks
 \protected@xdef\incl@filedivtitle{%
 [{\incl@titletotoc}]% braces to allow [and] in the title to toc.
 {\protect\@title
 {\protect\smallerr% this macro is provided by the gmutils package

after the relsize package.
 \@ifauthor
 {\protect\\[.em]\@nx\@author
 \ifx\relax\@date\else,␣\fi}% after use, \@date is let to \re¦

lax.
 {\ifx\relax\@date\else\protect\\[.em]\fi}

The default is that all the included files have the same author(s). In this casewewon’t
print the author(s) in the headings. Otherwise we wish to print them. The information
which case are we in is brought by the \if@variousauthors switch defined in line
.

If we wish to print the author’s name (\if@variousauthors), then we’ll print the
date after the author, separated with a comma. If we don’t print the author, there still
may be a date to be printed. In such a case we break the line, too, and print the date
with no comma.

 \protect\@date}}% end of \incl@filedivtitle’s brace (nd or
rd argument).

 }% end of \incl@filedivtitle’s \protected@xdef.

We \protect all the title components to avoid expanding \footnotemark hidden
in \thanks during \protected@xdef (and to let it be executed during the typesetting,
of course).

 }% end of the comma-\and’s group.
 \@xa\filediv\incl@filedivtitle
 \@thanks

 \g@relaxen\@author␣\g@relaxen\@title␣\g@relaxen\@date
 \g@emptify\@thanks
 }% end of \InclMaketitle.

What I make the default, is an assumption that all the multi-documented files have
the same author(s). And with the account of the other possibility I provide the below
switch and declaration.

 \newif\if@variousauthors\if@variousauthors

(its name comes from f iles have different authors).

 \newcommand⋆\PrintFilesAuthors{\@variousauthorstrue}\PrintFilesAuthors

And the counterpart, if you change your mind:

 \newcommand⋆\SkipFilesAuthors{\@variousauthorsfalse}\SkipFilesAuthors

 \def\@ifauthor{%
% # what if true
% # what if false

 \ifnum\numexpr\if@variousauthors\else\fi⋆
 \ifx\@author\relax\else\ifx\@author\@empty\else\fi%

\fi>
 \@xa\@firstoftwo
 \else
 \@xa\@secondoftwo
 \fi
 }

The file’s date and version information

Define \filedate and friends from info in the \ProvidesPackage etc. commands.

 \def\GetFileInfo#{%
 \def\filename{#}%
 \def\gmu@tempb##␣##␣##\relax##\relax{%
 \def\filedate{##}%
 \def\fileversion{##}%
 \def\fileinfo{##}}%
 \edef\gmu@tempa{\csname␣ver@#\endcsname}%
 \@xa\gmu@tempb\gmu@tempa\relax?␣?␣\relax\relax}

Since we may documentally input files that we don’t load, as doc e.g., let’s define
a declaration to be put (in the comment layer) before the line(s) containing \Pro¦
vides…. The \FileInfo command takes the stuff till the closing] and subsequent
line end, extracts from it the info and writes it to the .aux and rescans the stuff. ε-TEX
provides a special primitive for that action but we remain strictly TEXnical and do it with
writing to a file and inputting that file.

 \newcommand⋆\FileInfo{%\FileInfo
 \bgroup
 \gmd@ctallsetup
 \bgroup% yes, we open two groups because we want to rescan tokens in ‘usual’

catcodes. We cannot put \gmd@ctallsetup into the inner macro because
when that will be executed, the \inputlineno will be too large (the last
not the first line).

 \let\do\@makeother

 \do\␣\do\{\do\}\do\^^M\do\\%
 \gmd@fileinfo}

 \foone{%
 \catcode`!\z@
 \catcode`(\@ne
 \catcode`)\tw@
 \let\do\@makeother
 \do\␣% we make space ‘other’ to keep it for scanning the code where it may be

leading.
 \do\{\do\}\do\^^M\do\\}%
 (%
 !def!gmd@fileinfo#Provides#{#}#[#]#^^M%
 (!egroup% we close the group of changed catcodes, the catcodes of the arguments

are set. And we are still in the group for \gmd@ctallsetup.
 !gmd@writeFI(#)(#)(#)%
 !gmd@FIrescan(#Provides#{#}#[#]#)% thismacrowill close the group.

)%
)

 \def\gmd@writeFI###{%
 {\newlinechar=\endlinechar%
 \immediate\write\@auxout{%
 \global\@nx\@namedef{%
 ver@#.\if␣P\@firstofmany#\@nil␣sty\else␣cls\fi}{%

#}}}}

 \foone\obeylines{%
 \def\gmd@FIrescan#{%
 {\newlinechar=\endlinechar\scantokens{#}}\egroup^^M}}

And, for the case the input file doesn’t contain \Provides…, a macro for explicit
providing the file info. It’s written in analogy to \ProvidesFile, source 2ϵ, file L v.g,
l. .

 \def\ProvideFileInfo#{%
 \begingroup
 \catcode`\␣␣\catcode\endlinechar␣␣%
 \@makeother\/\@makeother\&%
 \kernel@ifnextchar[{\gmd@providefii{#}}{\gmd@providefii{#}[]}%
 }

 \def\gmd@providefii#[#]{%
(we don’t write the file info to .log)

 \@xa\xdef\csname␣ver@#\endcsname{#}%
 \endgroup}

And a self-reference abbreviation (intended for providing file info for the driver):

 \def\ProvideSelfInfo{\ProvideFileInfo{\jobname.tex}}

For the files generated frommaster, in which all the info is porvided at the beginning
in macros \〈name〉Version, \〈name〉Date etc. (not to repeat that information in the
body of text):

 \def\gmd@upperDIV#{%
 \if␣d#D\fi

 \if␣i#I\fi
 \if␣v#V\fi
 }

First we look for the info at the leaf-level, then at standalone level, then at the bundle
level. If we don’t find it, it’ll be empty.

 \def\edefInfo
 #% name
 #% datum
 {%
 \edef\gmd@edefInfo@resa{\gmd@upperDIV␣#}%
 \@nameedef{file#}{%
 \ifcsname␣#Leaf\gmd@edefInfo@resa\endcsname␣% e.g.gmbaseLeafVersion
 \xA\xA\xA\detokenize\xA\xA\xA{%
 \csname␣#Leaf\gmd@edefInfo@resa\endcsname
 }%
 \else
 \ifcsname␣#\gmd@edefInfo@resa\endcsname␣% e.g.gmbaseVersion
 \xA\xA\xA\detokenize\xA\xA\xA{%
 \csname␣#\gmd@edefInfo@resa\endcsname
 }%
 \else
 \ifcsname␣\gmBundleFile␣\gmd@edefInfo@resa\endcsname␣% e.g.gmutilsVersion
 \xA\xA\xA\detokenize\xA\xA\xA{%
 \csname␣\gmBundleFile␣\gmd@edefInfo@resa\endcsname
 }%
 \fi
 \fi
 \fi
 }% of edefined macro
 }% of \edefInfo

To get file info (the file is a leaf of a bundle or a standalone)

 \def\FileInfoFromName#{%
 \edefInfo{#}{date}%
 \edefInfo{#}{version}%
 \edefInfo{#}{info}%
 \def\GeneralName{#\actualchar\pk{#}␣}% for the changes’ history.
 }

Get bundle info

 \def\BundleInfoFromName#{%
 \def\gmBundleFile{#}%
 \Store@MacroSt␣{#LeafDate}%
 \Store@MacroSt␣{#LeafVersion}%
 \Store@MacroSt␣{#LeafInfo}%
 \n@melet{#LeafDate}{@undefined}%
 \n@melet{#LeafVersion}{@undefined}%
 \n@melet{#LeafInfo}{@undefined}%
 \FileInfoFromName{#}%
 \Restore@MacroSt␣{#LeafDate}%
 \Restore@MacroSt␣{#LeafVersion}%
 \Restore@MacroSt␣{#LeafInfo}%

 }

A neat conventional statement used in doc’s documentation e.g., to be put in
\thanks to the title or in a footnote:

 \pdef\filenote{This␣file␣has␣version␣number␣\fileversion{}␣
dated␣\filedate{}.}

And exactly as \thanks:

 \pdef\thfileinfo{\thanks\filenote}

And to the footnote:

 \pdef\fnfileinfo{%
 \gmu@ifedetokens{\@currext}{toc}%
 {}%
 {\footnote\filenote}%
 }

Miscellanea

The main inputting macro, \DocInput has been provided. But there’s another one in
doc and it looks very reasonably: \IndexInput. Let’s make analogous one here:

 \foone{\obeylines}%
 {%
 \pdef\IndexInput#{%
 \Store@Macro\code@delim%
 \CodeDelim⋆\^^Z%
 \def\gmd@iihook{% this hook is \edefed!
 \@nx^^M%
 \code@delim\relax\@nx\let\@nx\EOFMark\relax}%
 \DocInput{#}\Restore@Macro\code@delim}%
 }

How does it work? We assume in the input file is no explicit 〈char〉. This char is
chosen as the code delimiter and will be put at the end of input. So, entire file contents
will be scanned char by char as the code.

The below environment I designed to be able to skip some repeating texts while
documenting several packages of mine into one document. At the default settings it’s
just a \StraightEOL group and in the \skipgmlonely declaration’s scope it gobbles
its contents.

 \newenvironment{gmlonely}{\StraightEOL}{}gmlonely

 \newcommand\skipgmlonely[][]{%\skipgmlonely
 \def\gmu@tempa{%
 \def\gmd@skipgmltext{%
 \g@emptify\gmd@skipgmltext
 #%
 }}% not to count the lines of the substituting text but only of the text omitted
 \gmu@tempa
 \@xa\AtBegInput\@xa{\gmu@tempa}%
 \renewenvironment{gmlonely}{%gmlonely
 \StraightEOL
 \@fileswfalse% to forbid writing to .toc, .idx etc.
 \setbox=\vbox\bgroup}{\egroup\gmd@skipgmltext}}

Sometimes in the commentary of this package, so maybe also others, I need to say
some char is of category (‘other sign’). This I’ll mark just as got by \catother.

 \foone{\catcode`_=␣}% we ensure the standard \catcode of _.
 {%
 \newcommand⋆\catother{{}_{}}%\catother

Similarly, if we need to say some char is of category (‘active’), we’ll write , got by
\catactive

 \newcommand⋆\catactive{{}_{}}%\catactive

and a letter,
 \newcommand⋆\catletter{{}_{}}% .\catletter
 }

For the copyright note first I used just verse but it requires marking the line ends
with \\ and indents its contents while I prefer the copyright note to be flushed left. So

 \newenvironment⋆{copyrnote}{%copyrnote
 \StraightEOL\everypar{\hangindentem\relax\hangafter␣}%
 \par\addvspace\medskipamount\parindent\z@\obeylines}{%
 \@codeskipputgfalse\stanza}

I renew the quotation environment to make the fact of quoting visible.

 \StoreEnvironment{quotation}
 \def\gmd@quotationname{quotation}
 \renewenvironment{quotation}{%quotation

The first non-me user complained that abstract comes out in quotation marks.
That is because abstract uses quotation internally. So we first check whether the
current environment is quotation or something else.

 \ifx\@currenvir\gmd@quotationname
 \afterfi{\par``\ignorespaces}%
 \else\afterfi{\storedcsname{quotation}}%
 \fi}
 {\ifx\@currenvir\gmd@quotationname
 \afterfi{\ifhmode\unskip\fi''\par}%
 \else\afterfi{\storedcsname{endquotation}}%
 \fi}

For somemysterious reasons\noindentdoesn’tworkwith the first (narrative) para-
graph after the code so let’s work it around:

 \def\gmdnoindent{%
 \ifvmode\leavevmode\hskip-\parindent\ignorespaces
 \fi}% \ignorespaces is added to eat a space inserted by \gmd@textEOL.

Without it it also worked but it was a bug: since \parindent is a dimen
not skip, TEX looks forward and expands macros to check whether there is
a stretch or shrink part and therefore it gobbled the \gmd@textEOL’s space.

When a verbatim text occurs in an in-line comment, it’s advisable to precede it with %
if it begins a not first line of such a comment not tomistake it for a part of code. Moreover,
if such a short verb breaks in itsmiddle, it should breakwith the percent at the beginning
of the new line. For this purpose provide \inverb. It breaks with a % at the beginning
of new line. Ist starred version puts % also at the end of the upper line.

 \pdef\inverb{%

 \gmu@ifstar{%
 \def\gmu@tempa{\verbhyphen}% the pre-break.
 \@emptify\gmu@tempb% the no-break.
 \gmd@inverb}%
 {\@emptify\gmu@tempa% the pre-break empty
 \def\gmu@tempb{\gmboxedspace}% the no-break boxed space.
 \gmd@inverb}}

 \newcommand⋆\gmboxedspace{\hbox{\normalfont{␣}}}\gmboxedspace

 \pdef\gmd@nlperc{%
 \ifhmode\unskip\fi
 \begingroup\hyphenpenalty\inverbpenalty\relax
 \discretionary{\hbox{\gmu@tempa}}% (pre-break). I always put a \hbox

here to make this discretionary score the \hyphenpenalty not \exhy¦
phenpenalty (The TEX book p.) since the latter may be , in Polish
typesetting.

 {\hbox{\narrationmark}}% (post-break)
 {\gmu@tempb}% (no-break).
 \endgroup
 \penalty\hskipsp\relax}

 \def\inverbpenalty{-}

 \pdef\gmd@inverb{%
 \gmd@nlperc
 \ifmmode\hbox\else\leavevmode\null\fi
 \bgroup
 \ttverbatim
 \narrativett
 \def\breakablevisspace{%
 \discretionary{\visiblespace}{\narrationmark}{%

\visiblespace}}%
 \def\breakbslash{%
 \discretionary{}{\narrationmark\type@bslash}{%

\type@bslash}}%
 \def\breaklbrace{%
 \discretionary
 {\xiilbrace\verbhyphen}%
 {\narrationmark}%
 {\xiilbrace}}%
 \gm@verb@eol
 \@sverb@chbsl% It’s always with visible spaces.
 }

 \pdef\nlperc{\newline\narrationmark\ignorespaces}

 \pdef\nlpercent{%
 \@emptify\gmu@tempa
 \def\gmu@tempb{\gmboxedspace}%
 \gmd@nlperc
 }

 \pdef\incs{% an in-line \cs
 \@emptify\gmu@tempa
 \def\gmu@tempb{\gmboxedspace}%

 \gmd@nlperc\cs
 }

 \def\inenv{\incs[]}% an in-line \env

 \def\incmd{% it has to be \def to let it expand to let \cmd convert its argument to
a safe string.

 \nlpercent\cmd}

 \def\inhash{\nlpercent\hash}

As you see, \inverb and \nlpercent insert a discretionary that breaks to % at the
beginning of the lower line. Without the break it’s a space (alas at its natural width i.e.,
not flexible) or, with the starred version, nothing. The starred version puts % also at the
end of the upper line. Then \inverb starts sth. like \verb⋆ but the breakables of it
break to % in the lower line.

TO-DO: make the space flexible (most probably it requires using sth. else than \dis¦
cretionary).

An optional hyphen for CSes in the in-line comment:

 \@xa\ampulexdef\csname\@dc@InnerName\cs\endcsname\cs
 [#]␣[#]␣{\begingroup}␣{\ifdefined}
 {\begingroup␣\def\+{\discre{\gmv@hyphen}{\narrationmark}{}}%
 \ifdefined}

 \providecommand⋆\ds{DocStrip}\ds

Finally, a couple of macros for documenting files playingwith %’s catcode(s). Instead
of % I used &. They may be at the end because they’re used in the commented thread i.e.
after package’s \usepackage.

 \newcommand⋆\CDAnd{\CodeDelim\&}\CDAnd

 \newcommand⋆\CDPerc{\CodeDelim\%}\CDPerc

And for documenting in general:
A general sectioning command because I foresee a possibility of typesetting the same

file once as independent document and another time as a part of bigger whole.

 \let\division=\section\division

 \let\subdivision=\subsection\subdivision

 \let\subsubdivision=\subsubsection\subsubdivision

To kill a tiny little bug in doc.dtx (in line \gmu@tempb and \gmu@tempc are
written plain not verbatim):

 \newcounter{gmd@mc}gmd@mc

Note it is after the macrocode group

 \def\gmd@mchook{\stepcounter{gmd@mc}%
 \gmd@mcdiag
 \ifcsname␣gmd@mchook\the\c@gmd@mc\endcsname
 \afterfi{\csname␣gmd@mchook\the\c@gmd@mc\endcsname}%
 \fi}

 \long\def\AfterMacrocode##{\@namedef{gmd@mchook#}{#}}

What have I done? I declare a new counter and employ it to count themacrocode[⋆]s
(and oldmc[⋆]s too, in fact) and attach a hook to (after) the end of every such environ-
ment. That lets us to put some stuff pretty far inside the compiled file (for the buggie in
doc.dtx, to redefine \gmu@tempb/c).

One more detail to explain and define: the \gmd@mcdiag macro may be defined
to type out a diagnostic message (the macrocode[⋆]’s number, code line number and
input line number).

 \@emptify\gmd@mcdiag

 \def\mcdiagOn{\def\gmd@mcdiag{%
 \typeout{^^J\bslash␣end{\gmd@lastenvir}␣No.\the\c@gmd@mc
 \space\on@line,␣cln.\the\c@codelinenum.}}}

 \def\mcdiagOff{\@emptify\gmd@mcdiag}

An environment to display the meaning of macro parameters: its items are automat-
ically numbered as #, # etc.

 \DeclareEnvironment{enumargs}{o}% the optional argument specifies num-
ber of #’s; it’s of the o type to inform if it was not given by the user to handle
a possible active char touched by argument’s catcher; can be (the default),
or ; any else produces one #.

 {%
 \StraightEOL
 \if@aftercode
 \edef\gmu@tempa{\the\leftskip}%
 \edef\gmu@tempb{\the\hangindent}%
 \fi
 \enumerate
 \if@aftercode
 \leftskip=\glueexpr\gmu@tempa+\gmu@tempb\relax
 \fi
 \edef\gmd@ea@hashes{%
 \#\ifcase\IfValueTF{#}{#}{}\relax
 \or\or\#\or\or\#\#\#\fi}%

 \@namedef{label\@enumctr}{%
 \env{\if@aftercode\narrationmark\fi
 \relax% to stop \ignorespaces
 \gmd@ea@bwrap
 \gmd@ea@hashes
 \csname␣the\@enumctr\endcsname
 \gmd@ea@ewrap}}% of \label〈@enumctr〉.
 \let\mand\item
 \provide\gmd@ea@wraps{%\gmd@ea@wraps
 \emptify\gmd@ea@ewrap
 \emptify\gmd@ea@bwrap}%
 \gmd@ea@wraps
 \def\opt{%
 \def\gmd@ea@bwrap{[}\def\gmd@ea@ewrap{]}%
 \item
 \gmd@ea@wraps}%

 \settowidth{\@tempdima}{\narrativett␣x\gmd@ea@hashesx}%
 \edef\gmd@ea@xxxwd{\the\@tempdima}%

 \DeclareCommand\dc␣!{%\dc
 Q{⋆>}␣% () we check whether there’s a sergeant right of the prefix or a star to

suppress parentheses,
 Q{P!lL\long␣iI}␣% () an optional ‘bare’ prefix for a ‘long’ argument or for

ignored
 b␣% () prefix(es) in curly braces (This waywe allow the prefix(es) to be braced

or not at the author’s option),
 >\@xa␣T{\@dc@argtypes}␣% () (optional) argument type specifier,
 b␣% () (optional) default value of the specified argument or (for K and G)

mandatory.
 b␣% () default of K and G.
 }{%
 \gmu@ifxany␣⋆{##}%
 {% a ⋆ suppresses bracket/brace/parentheses decoration.
 \def\gmd@ea@bwrap{\hbox␣to␣\gmd@ea@xxxwd\bgroup\hss}%
 \def\gmd@ea@ewrap{\hss\egroup}%
 }%
 {% if there’s no ⋆ in #, be wrap the item label in braces/brackets/parentheses.
 \gmu@ifxany␣##{bB}{% I decide not to print m type arguments in braces

because the braces are not mandatory for this type.
 \def\gmd@ea@bwrap{\{}%
 \def\gmd@ea@ewrap{\}}%
 }{}%
 \gmu@ifxany␣##{cC}{%
 \def\gmd@ea@bwrap{(}%
 \def\gmd@ea@ewrap{)}%
 }{}%
 \gmu@ifxany␣##{oO}{%
 \def\gmd@ea@bwrap{[}%
 \def\gmd@ea@ewrap{]}%
 }{}%
 \gmu@ifxany␣##{G}{%
 \def\gmd@ea@bwrap{\detokenize\@xa{\@firstoftwo##}}%
 \def\gmd@ea@ewrap{\detokenize\@xa{\@secondoftwo##}}%
 }{}%
 \gmu@ifxany␣##{A}{%
 \def\gmd@ea@bwrap{<}%
 \def\gmd@ea@ewrap{>}%
 }{}%
 }% of if no ⋆ in #.
 \gmu@ifxany␣##{mQsSTK\afterassignment}{%
 \def\gmd@ea@bwrap{\hbox␣to␣\gmd@ea@xxxwd\bgroup\hss}%
 \def\gmd@ea@ewrap{\hss\egroup}%
 }{}%

we add a normal space

 \addtomacro\gmd@ea@ewrap{{\normalfont\␣}}%
 \IfValueT{##}{%
 \addtomacro\gmd@ea@ewrap{>\{\string##\}}}%
 \IfValueT{##}{%
 \addtomacro\gmd@ea@ewrap{>\{##\}}}%
 \IfValueT{##}{%
 \ifx␣s##%

 \addtomacro\gmd@ea@ewrap{%
 \llap{\metachar[}\scanverb{⋆}\metachar]}%
 \else\addtomacro\gmd@ea@ewrap{##}%
 \fi}%
 \IfValueT{##}{%
 \addtomacro\gmd@ea@ewrap{\{%

%\ttverbatim breakable chars won’t work because we are in the item’s label’s
% \hbox.

 \scanverb⋆{##}%
 \}}}%
 \IfValueT{##}{%
 \addtomacro\gmd@ea@ewrap{\{%

%\ttverbatim breakable chars won’t work because we are in the item’s label’s
% \hbox.

 \scanverb⋆{##}%
 \}}}%
 \def\gmd@blubra{%
 \addtomacro\gmd@ea@bwrap{%
 \begingroup
 \relaxen\gmd@ea@hashes
 \@namedef{the\@enumctr}{\<ign.>}%
 }%
 \prependtomacro\gmd@ea@ewrap{%
 \endgroup}%
 \addtomacro\gmd@ea@ewrap{%
 \global␣\advance␣\csname␣c@\@enumctr\endcsname␣\m@ne
 }%
 \emptify\gmd@blubra
 }%
 \gmu@ifsbintersect␣{##}{Ii}{\gmd@blubra}{}%
 \gmu@ifsbintersect␣{##}{Ii}{\gmd@blubra}{}%
 \gmu@ifxany␣##{\afterassignment}{\gmd@blubra}{}%
 \item\relax}%

 \IfNoValueT{#}{\@ifnextac\@gobble{}}% to gobble a possible active
line end or active ^^A or ^^B that might have occurred because of \fu¦
turelet of the optional argument checker.

 }% of begin definition
 {\endenumerate}

The starred version is intended for lists of arguments some of which are optional: to
align them in line.

 \newenvironment⋆{enumargs⋆}{%enumargs⋆
 \def\gmd@ea@wraps{%\gmd@ea@wraps
 \def\gmd@ea@bwrap{␣}\def\gmd@ea@ewrap{␣}}%
 \enumargs}{\endenumargs}

doc-compatibility

My TEX Guru recommended me to write hyperlinking for doc. The suggestion came out
when writing of gmdoc was at such a stage that I thought it to be much easier to write
a couple of \lets to make gmdoc able to typeset sources written for doc than to write
a new package that adds hyperlinking to doc. So…

The doc packagemakes % an ignored char. Here the % delimits the code and therefore
has to be ‘other’. But only the first one after the code. The others we may re\catcode
to be ignored and we do it indeed in line .

At the very beginning of a doc-prepared file wemeet a nice command \Character¦
Table. My TEX Guru says it’s a bit old fashioned these days so let’s just make it notify
the user:

 \def\CharacterTable{\begingroup\CharacterTable
 \@makeother\{\@makeother\}%
 \Character@Table}

 \foone{%
 \catcode`\[=␣\catcode`\]=␣%
 \@makeother\{\@makeother\}}%
 [
 \def\Character@Table#{#}[\endgroup\Character@Table
 \message[^^J^^J␣gmdoc.sty␣package:^^J
 ====␣The␣input␣file␣contains␣the␣\bslash␣

CharacterTable.^^J
 ====␣If␣you␣really␣need␣to␣check␣the␣correctness␣of␣the␣

chars,^^J
 ====␣please␣notify␣the␣author␣of␣gmdoc.sty␣at␣the␣email␣

address^^J
 ====␣given␣in␣the␣legal␣notice␣in␣gmdoc.sty.^^J^^J]%
]]

Similarly as doc, gmdoc provides macrocode, macro and environment environ-
ments. Unlike in doc, \end{macrocode} does not require to be preceded with any par-
ticular number of spaces. Unlike in doc, it is not a kind of verbatim, however, which
means the code and narration layers remains in force inside it whichmeans that any text
after the first % in a line will be processed as narration (and its control sequences will be
executed). For a discussion of a possible workaround see line .

Let us now look over other original doc’s control sequences and let’s ‘domesticate’
them if they are not yet.

The \DescribeMacro and \DescribeEnv commands seem to correspondwithmy\DescribeMacro
\DescribeEnv \TextUsage macro in its plain and starred version respectively except they don’t type-

set their arguments in the text i.e., they do two things of the three. So let’s \def them
to do these two things in this package, too:

 \outer\def\DescribeMacro{%\DescribeMacro
 \@bsphack
 \begingroup\MakePrivateLetters
 \gmd@ifonetoken\Describe@Macro\Describe@Env}

Note that if the argument to \DescribeMacro is not a (possibly starred) control
sequence, then as an environment’s name shall it be processed except the \MakePriv¦
ateOthers re\catcodeing shall not be done to it.

 \outer\def\DescribeEnv{%\DescribeEnv
 \@bsphack
 \begingroup\MakePrivateOthers\Describe@Env}

Actually, I’ve used the \Describe… commands myself a few times, so let’s \def
a common command with a starred version:

 \outer\def\Describe{% It doesn’t typeset its argument in the point of occur-\Describe

rence.
 \leavevmode
 \@bsphack
 \begingroup\MakePrivateLetters
 \gmu@ifstar{\MakePrivateOthers\Describe@Env}{%

\Describe@Macro}}

The below twodefinitions are adjusted ˜s of\Text@UsgMacro and\Text@UsgEnvir.

 \long\def\Describe@Macro#{%\Describe@Macro
 \endgroup
 \strut\Text@Marginize⋆{#}%
 \@usgentryze#% we declare kind of formatting the entry
 \text@indexmacro#%
 \@esphack}

 \def\Describe@Env#{%\Describe@Env
 \endgroup
 \strut\Text@Marginize⋆{#}%
 \@usgentryze{#}% we declare the ‘usage’ kind of formatting the entry and

index the sequence #.
 \text@indexenvir{#}%
 \@esphack}

Note that here the environments’ names are typeset in \narrativett font just like
the macros’, unlike in doc.

My understanding of ‘minimality’ includes avoiding too much freedom as causing
chaos not beauty. That’s the philosophical and æ sthetic reason why I don’t provide
\MacroFont. In my opinion there’s a noble tradition of typesetting the TEX code in \tt\MacroFont
font and this tradition sustained should be. If onewants to change the tradition, let them
redefine \tt, in TEX it’s no problem. I suppose \MacroFont is not used explicitly, and
that it’s (re)defined at most, but just in case let’s \let:

 \let\MacroFont\tt

We have provided \CodeIndent in line . And it corresponds with doc’s \Mac¦\CodeIndent
\MacroIndent roIndent so

 \let\MacroIndent\CodeIndent\MacroIndent

And similarly the other skips:

 \let\MacrocodeTopsep\CodeTopsep\MacrocodeTopsep

Note that \MacroTopsep is defined in gmdoc and has the same rôle as in doc.\MacroTopsep

 \let\SpecialEscapechar\CodeEscapeChar\SpecialEscapechar
\theCodelineNo \theCodelineNo is not used in gmdoc. Instead of it there is \LineNumFont dec-\LineNumFont laration and a possibility to redefine \thecodelinenum as for all the counters. Here

the \LineNumFont is used two different ways, to set the benchmark width for a line
number among others, so it’s not appropriate to put two things into one macro. Thus
let’s give the user a notice if they defined this macro:

Because of possible localness of the definitions it seems to be better to add a check at
the end of each \DocInput or \IndexInput.

 \AtEndInput{\@ifundefined{theCodelineNo}{}{\PackageInfo{%
gmdoc}{The

 \string\theCodelineNo\space␣macro␣has␣no␣effect␣here,␣
please␣use

 \string\LineNumFont\space␣for␣setting␣the␣font␣and/or
 \string\thecodelinenum\space␣to␣set␣the␣number␣

format.}}}

I hope this lack will not cause big trouble.

For further notifications let’s define a shorthand:

 \def\noeffect@info#{\@ifundefined{#}{}{\PackageInfo{gmdoc}{%\noeffect@info
^^J%

 The␣\bslash#␣macro␣is␣not␣supported␣by␣this␣package^^J
 and␣therefore␣has␣no␣effect␣but␣this␣notification.^^J
 If␣you␣think␣it␣should␣have,␣please␣contact␣the␣

maintainer^^J
 indicated␣in␣the␣package's␣legal␣note.^^J}}}

The four macros formatting the macro and environment names, namely
\PrintDescribeMacro,\PrintDescribeMacro
\PrintMacroName, \PrintDescribeEnv and \PrintEnvName are not supported by\PrintMacroName

\PrintDescribeEnv
\PrintEnvName

gmdoc. They seem to me to be too internal to take care of them. Note that in the name of
(æsthetic) minimality and (my) convenience I deprive you of easy knobs to set strange
formats for verbatim bits: I think they are not advisable.

Let us just notify the user.

 \AtEndInput{%
 \noeffect@info{PrintDescribeMacro}%
 \noeffect@info{PrintMacroName}%
 \noeffect@info{PrintDescribeEnv}%
 \noeffect@info{PrintEnvName}}

The \CodelineNumbered declaration of doc seems to be equivalent to our noindex\CodelineNumbered
option with the linesnotnum option set off so let’s define it such a way.

 \def\CodelineNumbered{\AtBeginDocument{\gag@index}}\CodelineNumbered
 \@onlypreamble\CodelineNumbered

Note that if the linesnotnum option is in force, this declaration shall not revert its
effect.

I assume that if one wishes to use doc’s interface then they’ll not use gmdoc’s options
but just the default.

The \CodelineIndex and \PageIndex declarations correspond with the gmdoc’s
default and the pageindex option respectively. Therefore let’s \let

 \let\CodelineIndex\@pageindexfalse
 \@onlypreamble\CodelineIndex

 \let\PageIndex\@pageindextrue
 \@onlypreamble\PageIndex

The next two declarations I find useful and smart:

 \def\DisableCrossrefs{\@bsphack\gag@index\@esphack}\DisableCrossrefs

 \def\EnableCrossrefs{\@bsphack\ungag@index\EnableCrossrefs
 \def\DisableCrossrefs{\@bsphack\@esphack}\@esphack}\DisableCrossrefs

The latter definition is made due to the footnote on p. of the Frank Mittel-
bach’s doc’s documentation and both of them are copies of lines – of it modulo
\[un]gag@index.

The subsequent few lines I copy almost verbatim ;-) from the lines –.

 \newcommand⋆\AlsoImplementation{\@bsphack\AlsoImplementation
 \long\def\StopEventually##{\gdef\Finale{##}}% we define \Fin¦\StopEventually

% ale just to expand to the argument of \StopEventually not to to add
anything to the end input hook because \Finale should only be executed
if entire document is typeset.

%\init@checksum is obsolete in gmdoc at this point: the CheckSum counter is reset
just at the beginning of (each of probably numerous) input(s).

 \@esphack}

 \AlsoImplementation

“When the user places an \OnlyDescription declaration in the driver file the doc-
ument should only be typeset up to \StopEventually. We therefore have to redefine
this macro.”

 \def\OnlyDescription{\@bsphack\long\def\StopEventually##{%\OnlyDescription
\StopEventually “In this case the argument of \StopEventually should be set and afterwards TEX

should stop reading from this file. Therefore we finish this macro with”

 ##�endinput}\@esphack}

“If no \StopEventually command is given we silently ignore a \Finale issued.”

 \@relaxen\Finale

The \meta macro is so beautifully crafted in doc that I couldn’t resist copying it\meta
into gmutils. It’s also available in Knuthian (The TEX book format’s) disguise \<〈the argu-\<…>
ment〉>.

The checksum mechanism is provided and developed for a slightly different pur-
pose.

Most of doc’s indexing commands have already been ‘almost defined’ in gmdoc:

 \let\SpecialMainIndex=\DefIndex

*

 \def\SpecialMainEnvIndex{\csname␣CodeDefIndex\endcsname⋆}% wedon’t\SpecialMainEnvIndex
type \DefIndex explicitly here because it’s \outer, remember?

 \let\SpecialIndex=\CodeCommonIndex\SpecialIndex

 \let\SpecialUsageIndex=\TextUsgIndex\SpecialUsageIndex

 \def\SpecialEnvIndex{\csname␣TextUsgIndex\endcsname⋆}\SpecialEnvIndex

 \def\SortIndex##{\index{#\actualchar#}}\SortIndex

“All these macros are usually used by other macros; you will need them only in an
emergency.”

Therefore I made the assumption(s) that ‘Main’ indexing macros are used in my
‘Code’ context and the ’Usage’ ones in my ‘Text’ context.

Frank Mittelbach in doc provides the \verbatimchar macro to (re)define the\verbatimchar
\verb[⋆]’s delimiter for the index entries. The gmdoc package uses the same macro

and its default definition is {&}. When you use doc you may have to redefine \ver¦
batimchar if you use (and index) the \+ control sequence. gmdoc does a check for the
analogous situation (i.e., for processing \&) and if it occurs it takes as the \verb⋆’s
delimiter. So strange delimiters are chosen deliberately to allow any ‘other’ chars in the
environments’ names. If this would cause problems, please notify me and we’ll think
of adjustments.

 \def\verbatimchar{&}\verbatimchar
\IndexPrologue \IndexPrologue is defined in line . And other doc index commands too.

 \@ifundefined{main}{}{\let\DefEntry=\main}

 \@ifundefined{usage}{}{\let\UsgEntry=\usage}

About how the DocStrip directives are supported by gmdoc, see section The Doc-
Strip…. This support is not that sophisticated as in doc, among others, it doesn’t count
the modules’ nesting. Therefore if we don’t want an error while gmdocumenting doc-
prepared files, better let’s define doc’s counter for the modules’ depths.

 \newcounter{StandardModuleDepth}StandardModuleDepth

For now let’s just mark the macro for further development DocstyleParms

 \noeffect@info{DocstyleParms}\

For possible further development or to notify the user once and forever:

 \@emptify\DontCheckModules␣\noeffect@info{DontCheckModules}\DontCheckModules
 \@emptify\CheckModules␣\noeffect@info{CheckModules}\CheckModules

The \Module macro is provided exactly as in doc.\Module

 \@emptify\AltMacroFont␣\noeffect@info{AltMacroFont}\AltMacroFont

“And finally the most important bit: we change the \catcode of % so that it is ig-
nored (which is howwe are able to produce this document!). We provide two commands
to do the actual switching.”

 \def\MakePercentIgnore{\catcode`\%\relax}\MakePercentIgnore
 \def\MakePercentComment{\catcode`\%\relax}\MakePercentComment

gmdocing doc.dtx

The author(s) of doc suggest(s):
“For examples of the use of most—if not all—of the features described above consult

the doc.dtx source itself.”
Therefore I hope that after doc.dtx has been gmdoc-ed, one can say gmdoc is doc-

compatible “at most—if not at all”.
TEXing the original doc with my humble package was a challenge and a milestone

experience in my TEX life.

One of minor errors was caused by my understanding of a ‘shortverb’ char: due to
gmverb, in the math mode an active ‘shortverb’ char expands to itself’s ‘other’ version
thanks to \string (It’s done with | in mind). doc’s concept is different, there a ‘short-
verb’ char should in the math mode work as shortverb. So let it be as they wish: gmverb
provides \OldMakeShortVerb and the old-style input commands change the inner
macros so that also \MakeShortVerb works as in doc (cf. line).

 What a false modesty! ;-)

We also redefine the macro environment to make it mark the first code line as the
point of defining of its argument, because doc.dtx uses this environment also for implicit
definitions.

 \def\OldDocInput{%\OldDocInput
 \AtBegInputOnce{\StraightEOL
 \let\@MakeShortVerb=\old@MakeShortVerb
 \OldMacrocodes}%
 \bgroup\@makeother_% it’s to allow _ in the filenames. The next macro will

close the group.
 \Doc@Input}

Wedon’t switch the @codeskipput switch neitherwe check it because in ‘old’world
there’s nothing to switch this switch in the narration layer.

I had a hot and wild TEX all the night and what a bliss when the ‘Successfully for-
mated page(s)’ message appeared.

My package needed fixing some bugs and adding some compatibility adjustments
(listed in the previous section) and the original doc.dtx source file needed a few adjust-
ments too because some crucial differences came out. I’d like towrite aword about them
now.

The first but not least is that the author(s) of doc give the CS marking commands
non-macro arguments sometimes, e.g., \DescribeMacro{StandardModuleDepth}.
Therefore we should launch the starred versions of corresponding gmdoc commands.
This means the doc-like commands will not look for the CS’s occurrence in the code but
will mark the first codeline met.

Another crucial difference is that in gmdoc the narrative and the code layers are sep-
arated with only the code delimiter and therefore may be muchmore mixed than in doc.
among others, the macro environment is not a typical verbatim like: the texts com-
mented out within macrocode are considered a normal commentary i.e., not verbatim.
Therefore some macros ‘commented out’ to be shown verbatim as an example source
must have been ‘additionally’ verbatimized for gmdoc with the shortverb chars e.g. You
may also change the code delimiter for a while, e.g., the line

 %␣\AVerySpecialMacro␣%␣delete␣the␣first␣%␣when. ..

was got with

\CodeDelim\.
% \AVerySpecialMacro % delete the first %

when.\unskip|..|\CDPerc

Onemore difference is thatmy shortverb chars expand to their versions in themath
modewhile in doc remain shortverb, so I added a declaration \OldMakeShortVerb etc.

Moreover, it’s TEXing docwhat inspired adding the \StraightEOL and \QueerEOL
declarations.

\OCRInclude

I realised that I want to print all my TEX source files verbatim just in case my computers
and electronic memories break so that I can reconstruct them via OCR . For this purpose
I provide \OCRInclude. It takes the same arguments as \DocInclude only typesets
a file with no index nor line numbers.

 \DeclareCommand\OCRInclude{O{}mO{}}{%\OCRInclude

 \Store@Macro\incl@DocInput
 \def\incl@DocInput##{%\incl@DocInput
 \begingroup
 \CodeSpacesBlank
 \@beginputhook
 \title{\currentfile}\maketitle
 \noverbatimspecials
 \relaxen\@xverbatim
 \relaxen\check@percent
 \Restore@Macro\@verbatim
 \verbatimleftskip\z@skip
 \verbatim
 \@makeother\|% because \ttverbatim doesn’t do that.
 \texcode@hook% we add some special stuff, e.g. in gmdocc.cls we
 \@input{##}%
 \endgroup}%
 \csname\@dc@InnerName\DocInclude\endcsname{#}{#}{#}%
 \Restore@Macro\incl@DocInput
 }

Polishing, development and bugs

• \MakePrivateLetters theoretically may interfere with \activeating some
chars to allow line breaks. But making a space or an opening brace a letter seems so
perverse that we may feel safe not to take account of such a possibility.

• When countalllines⋆ option is enabled, the comment lines that don’t produce
any printed output result with a (blank) line too because there’s put a hypertarget at the
beginning of them. But for now let’s assume this option is for draft versions so hasn’t be
perfect.

• Marcin Woliński suggests to add the marginpar clauses for the AMS classes as we
did for the standard ones in the lines –. Most probably I can do it on request
when I only know the classes’ names and their ‘marginpar status’.

• When the countalllines⋆ option is in force, some \list environments shall
raise the ‘missing \item’ error if you don’t put the first \item in the same line as
\begin{〈environment〉} because the (comment-) line number is printed.

• I’m prone to make the control sequences hyperlinks to the(ir) ‘definition’ occur-
rences. It doesn’t seem to be a big work compared with what has been done so far.

• Is \RecordChanges really necessary these days? Shouldn’t be the \makeglos¦
sary command rather executed by default?

• Do you use \listoftables and/or \listoffigures in your documentations?
If so, I should ‘EOL-straighten’ them like \tableofcontents, I suppose (cf. line).

• Some lines of non-printing stuff such as \Define…and \changes connecting the
narration with the code resulted with unexpected large vertical space. Adding a fully
blank line between the printed narration text and not printed stuff helped.

• Specifying codespacesgrey,␣codespacesblank results in typesetting all the
spaces grey including the leading ones.

• About the DocStrip verbatim mode directive see above.
 It’s understandable that ten years earlier writing things out to the files remarkably decelerated TEX,

but nowadays it does not in most cases. That’s why \makeindex is launched by default in gmdoc.

[No] 〈eof〉

Until version .i a file that is \DocInput had to be endedwith a comment linewith an
\EOF or\NoEOF CS that suppressed the end-of-file character tomake input endproperly.
Since version .i however the proper ending of input is achievedwith \everyeof and
therefore \EOF and \NoEOF become a bit obsolete.

If the user doesn’t wish the documentation to be ended by ‘〈eof〉’, they should re-
define the \EOFMark CS or end the file with a comment ending with \NoEOF macro
defined below:

 \foone{\catcode`\^^M\active␣}{%
 \def\@NoEOF#^^M{%\@NoEOF
 \@relaxen\EOFMark�endinput}%
 \def\@EOF#^^M{�endinput}}\@EOF

 \def\NoEOF{\QueerEOL\@NoEOF}\NoEOF
 \def\EOF{\QueerEOL\@EOF}\EOF

As you probably see, \[No]EOF have the ‘immediate’ \endinput effect: the file ends
even in the middle of a line, the stuff after \(No)EOF will be gobbled unlike with a bare
\endinput.

 〈/ doc〉
 〈⋆docc〉

Intro

This file is a part of gmdoc bundle and provides a document class for the driver files
documenting (LA)TEX packages &a. with my gmdoc.sty package. It’s not necessary, of
course: most probably you may use another document class you like.

By default this class loads mwart class with apaper (default) option and lmodern
package with T fontencoding. It loads also my gmdoc documenting package which
loads some auxiliary packages of mine and the standard ones.

If the mwart class is not found, the standard article class is loaded instead. Similarly,
if the lmodern is not found, the standard Computer Modern font family is used in the
default font encoding.

Usage

For the ideas and details of gmdocing of the (LA)TEX files see the gmdoc.sty file’s docu-
mentation (chapter ??). The rôle of the gmdocc document class is rather auxiliary and
exemplary. Most probably, youmay use your favourite document class with the settings
you wish. This class I wrote to meet my needs of fine formatting, such as not numbered
sections and sans serif demi bold headings.

However, with the users other thanmyself inmind, I added some conditional clauses
that make this class works also if an mwcls class or the lmodern package are unknown.

Of rather many options supported by gmdoc.sty, this class chooses my favourite, i.e.,
the default. An exception is made for the noindex option, which is provided by thisnoindex

 Thanks to Bernd Raichle at BachoTEX Pearl Session where he presented \inputing a file inside
\edef.

class and passed to gmdoc.sty. This is intended for the case you don’t want to make an
index.

Simili modo, the nochanges option is provided to turn creating the change historynochanges
off.

Both of the above options turn the writing out to the files off. They don’t turn off
\PrintIndex nor \PrintChanges. (Those two commands are no-ops by themselves
if there’s no .ind (n)or .gls file respectively.)

One more option is outeroff. It’s intended for compiling the documentation ofouteroff
macros definedwith the \outer prefix. It \relaxes this prefix so the ‘\outer’ macros’
names can appear in the arguments of other macros, which is necessary to pretty mark
and index them.

I decided not to make discarding \outer the default because it seems that LATEX
writers don’t use it in general and gmdoc.sty does make some use of it.

This class provides also the debug option. It turns the \if@debug Boolean switchdebug
True and loads the trace package that was a great help tomewhile debugging gmdoc.sty.

The default base document class loaded by gmdocc.cls is Marcin Woliński mwart. If
you have not installed it on your computer, the standard article will be used.

Moreover, if you like MW’s classes (as I do) and need \chapter (for multiple files’
input e.g.), you may declare another mwcls with the option homonymic with the class’s
name: mwrep formwrep and mwbk formwbk. For the symmetry there’s also mwart optionmwrep

mwbk
mwart

(equivalent to the default setting).
The existence test is done for any MW class option as it is in the default case.
Since version .g (November) the bundle goes X ETEX and that means you can

use the system fonts if you wish, just specify the sysfonts option and the three basicsysfonts
X ETEX-related packages (fontspec, xunicode and xltxtra) will be loaded and then you can
specify fonts with the fontspec declarations. For use of them check the driver of this
documentation where the TEX Gyre Pagella font is specified as the default Roman.

There are also some options for mono and sans fonts, see the changes history for
details.

The minion option sets Adobe Minion Pro as the main font, the pagella sets TEXminion
pagella Gyre Pagella as the main font.

The cronos option sets Adobe Cronos Pro as the sans serif font, the trebuchetcronos
trebuchet option sets MS Trebuchet as sans serif.

The cursor (working only with X ETEX & fontspec) option sets TEX Gyre Cursor ascursor
the typewriter font. It emboldens it to the optical weight of Computer/Latin Modern
Mono in the code (embolden=.) and leaves light (embolden=) for verbatims in the
narrative. Moreover, this option also prepares a condensed version (extend=.) for
verbatims in the marginpars.

Note that with no option for the monospaced font the default (with X ETEX) will be
LatinModernMono and then LatinModernMono Light Condensed is set for verbatims
in marginpars (if available).

This class sets \verbatimspecials⁄«»[¿] if the engine is X ETEX, see the gmverb\verbatimspecials
documentation to learn about this declaration. Remember that \verbatimspecials
whatever would they be, have no effect on the code layer.

The \EOFMark in this class typesets like this (of course, you can redefine it as you\EOFMark
wish):

〈eof〉

The Code

 \PassOptionsToPackage{rgb}{xcolor}

 \RequirePackage{xkeyval}

A shorthands for options processing (I know xkeyval to little to redefine the default prefix
and family).

 \newcommand⋆\gm@DOX{\DeclareOptionX[gmcc]<>}\gm@DOX
 \newcommand⋆\gm@EOX{\ExecuteOptionsX[gmcc]<>}\gm@EOX

We define the class option. I prefer the mwcls, but you can choose anything else,
then the standard article is loaded. Therefore we’d better provide a Boolean switch to
keep the score of what was chosen. It’s to avoid unused options if article is chosen.

 \newif\ifgmcc@mwcls\ifgmcc@mwcls

Note that the following option defines \gmcc@class#.

 \gm@DOX{class}{% the default will be Marcin Woliński class (mwcls) analogous toclass
article, see line .

 \def\gmcc@CLASS{#}%\gmcc@CLASS
 \@for\gmcc@resa:=mwart,mwrep,mwbk\do␣{%
 \ifx\gmcc@CLASS\gmcc@resa\gmcc@mwclstrue\fi}%
 }

 \gm@DOX{mwart}{\gmcc@class{mwart}}% Themwart classmay also be declaredmwart
explicitly.

 \gm@DOX{mwrep}{\gmcc@class{mwrep}}% If youneed chapters, this option choosesmwrep
an MW class that corresponds to report,

 \gm@DOX{mwbk}{\gmcc@class{mwbk}}% and thisMW class corresponds to book.mwbk

 \gm@DOX{article}{\gmcc@class{article}}% you can also choose article. Ameta-article
remark: When I tried to do the most natural thing, to \ExecuteOptionsX
inside such declared option, an error occurred: ’undefined control sequence
% \XKV@resa␣->␣\@nil’.

 \gm@DOX{outeroff}{\let\outer\relax}% This option allows\outer-prefixedouteroff
macros to be gmdoc-processed with all the bells and whistles.

 \newif\if@debug\if@debug

 \gm@DOX{debug}{\@debugtrue}% This option causes trace to be loaded and thedebug
Boolean switch of this option may be used to hide some things needed only
while debugging.

 \gm@DOX{noindex}{%noindex
 \PassOptionsToPackage{noindex}{gmdoc}}% This option turns the writ-

ing out to .idx file off.

 \newif\if@gmccnochanges\if@gmccnochanges

 \gm@DOX{nochanges}{\@gmccnochangestrue}% This option turns the writingnochanges
out to .glo file off.

Since version .g the gmdoc bundle goes X ETEX. That means that if X ETEX is de-
tected, we may load the fontspec package and the other two of basic three X ETEX-related,
and then we \fontspec the fonts. But the default remains the old way and the new
way is given as the option below.

 \newif\ifgmcc@oldfonts\ifgmcc@oldfonts

 \gm@DOX{sysfonts}{\gmcc@oldfontsfalse}sysfonts

 \gm@DOX{mptt}[]{\relax}% now a no-op, left only for backwards compatibil-mptt
ity. It was an option for setting the marginpar typewriter font.

 \def\gmcc@tout#{\typeout{^^J@@@@␣gmdocc␣class:␣#^^J}}\gmcc@tout

 \def\gmcc@setfont#{%\gmcc@setfont
 \gmcc@oldfontsfalse% note that if we are not in X ETEX, this switch will be

turned true in line
 \AtEndOfClass{%
 \ifdefined\zf@init\afterfi{%
 \gmcc@tout{Main␣font␣set␣to␣#}%
 \def\gmcc@dff{Numbers={OldStyle,␣Proportional}}\gmcc@dff
 \@xa\setmainfont\@xa[\gmcc@dff,␣Mapping=tex-text]{#}%
 \@xa\defaultfontfeatures\@xa{\gmcc@dff,␣Scale=MatchLowercase}%

when put before \setmainfont,
 \gmath
 \def\LineNumFont{%\LineNumFont
 \normalfont\scriptsize\addfontfeature{%

Numbers=Monospaced}}%
 }%
 \else\afterfi{\gmcc@tout{I~can␣set␣main␣font␣to␣#␣only␣in
 XeTeX/fontspec}}%
 \fi
 }}

 \gm@DOX{minion}{\gmcc@setfont{Minion␣Pro}}minion
 \gm@DOX{pagella}{\gmcc@setfont{TeX␣Gyre␣Pagella}pagella
 }
 \gm@DOX{cronos}{%cronos
 \AtEndOfClass{\setsansfont[Mapping=tex-text]{Cronos␣Pro}}}
 \gm@DOX{trebuchet}{%trebuchet
 \AtEndOfClass{\setsansfont[Mapping=tex-text]{Trebuchet␣MS}}}
 \gm@DOX{myriad}{%myriad
 \AtEndOfClass{\setsansfont[Mapping=text-text]{Myriad␣Web␣

Pro}}}
 \gm@DOX{lsu}{%lsu
 \AtEndOfClass{\setsansfont[Mapping=tex-text]{Lucida␣Sans␣

Unicode}}}

 \gm@DOX{cursor}{%cursor
 \AtEndOfClass{%
 \setmonofont[FakeBold=.,␣BoldFeatures={FakeBold=},
 FakeStretch=.,␣Ligatures=NoCommon
]{TeX␣Gyre␣Cursor}%
 \def\marginpartt{\tt\addfontfeature{FakeBold=,\marginpartt
 FakeStretch=.}%
 \color{black}}% to provide proper color when marginpar occurs be-

tween lines that break a coloured text.
 \def\narrativett{\ttfamily\addfontfeature{FakeBold=}}%\narrativett
 \let\UrlFont\narrativett
 }% of \AtEndOfClass.
 }% of the cursor option.

 \gm@DOX{fontspec}{\PassOptionsToPackage{#}{fontspec}}fontspec

 \gm@EOX{class=mwart}% We set the default basic class to be mwart.

 \newif\if@gmcc@tikz@\if@gmcc@tikz@
 \gm@DOX{tikz}{\@gmcc@tikz@true}tikz

 \PassOptionsToPackage{countalllines}{gmdoc}%

 \DeclareOptionX⋆{\PassOptionsToPackage{\CurrentOption}{gmdoc}}

 \ProcessOptionsX[gmcc]<>

 \long\def\@gobble#{}
 \long\def\@firstofone#{#}\@firstofone

 \if@gmcc@tikz@\expandafter\@firstofone\else\expandafter%
\@gobble\fi

 {\RequirePackage{tikz}}

 \ifgmcc@mwcls
 \IfFileExists{\gmcc@CLASS.cls}{}{\gmcc@mwclsfalse}% As announced,

we do the ontological test to any mwcls.
 \fi
 \ifgmcc@mwcls
 \LoadClass[fleqn,␣oneside,␣noindentfirst,␣pt,␣

withmarginpar,
 sfheadings]{\gmcc@CLASS}%
 \else
 \LoadClass[fleqn,␣pt]{article}% Otherwise the standard article is loaded.
 \fi

 \RequirePackage[mw=on]{gmutils}[//]% we load it early to provide
% \@ifXeTeX, but after loading the base class since this package redefines
some environments.

 \ifgmcc@mwcls\afterfi\ParanoidPostsec\fi

 \@ifXeTeX{}{\gmcc@oldfontstrue}

 \AtBeginDocument{\mathindent=\CodeIndent}

The fleqn option makes displayed formulæ be flushed left and \mathindent is
their indentation. Thereforewe ensure it is always equal \CodeIndent just like \left¦
skip in verbatim. Thanks to that and the \edverbs declaration below you may dis-
play single verbatim lines with \[...\]:

\[|\verbatim\stuff|\] .

 \ifgmcc@oldfonts
 \IfFileExists{lmodern.sty}{% We also examine the ontological status of

this package
 \RequirePackage{lmodern}% and if it shows to be satisfactory (the package

shows to be), we load it and set the proper font encoding.
 \RequirePackage[T]{fontenc}%
 }{}%

A couple of diacritics I met while gmdocing these files and The Source etc. Somewhy
the accents didn’t want to work at my X ETEX settings so below I define them for X ETEX
as respective chars.

 \def\agrave␣␣{\`a}%\agrave

 \def\cacute␣␣{\'c}%\cacute
 \def\eacute␣␣{\'e}%\eacute
 \def\idiaeres{\"\i}%\idiaeres
 \def\nacute␣␣{\'n}%\nacute
 \def\ocircum␣{\^o}%\ocircum
 \def\oumlaut␣{\"o}%\oumlaut
 \def\uumlaut␣{\"u}%\uumlaut
 \else% this case happens only with X ETEX.
 \let\do\relaxen
 \do\Finv\do\Game\do\beth\do\gimel\do\daleth% these five caused the

‘already defined’ error.
 \let\@zf@euenctrue\zf@euencfalse
 \XeTeXthree%
 \def\agrave␣␣{\char"E␣}%\agrave
 \def\cacute␣␣{\char"␣}% Note the space to be sure the number ends\cacute

here.
 \def\eacute␣␣{\char"E␣}%\eacute
 \def\idiaeres{\char"EF␣}%\idiaeres
 \def\nacute␣␣{\char"␣}%\nacute
 \def\oumlaut␣{\char"F␣}%\oumlaut
 \def\uumlaut␣{\char"FC␣}%\uumlaut
 \def\ocircum␣{\char"F␣}%\ocircum
 \AtBeginDocument{%
 \def\ae{\char"E␣}%\ae
 \def\l␣{\char"␣}%
 \def\oe{\char"␣}%\oe
 }%
 \fi

Now we set the page layout.
 \RequirePackage{geometry}
 \def\gmdoccMargins@params{{top=pt,␣height=pt,␣% = lines but\gmdoccMargins@params

the lines option seems not to work // with TEX Live and
X ETEX.-patch

 left=cm,␣right=.cm}}
 \def\gmdoccMargins{%\gmdoccMargins
 \@xa␣␣\newgeometry\gmdoccMargins@params}
 \@xa\geometry\gmdoccMargins@params
 \if@debug% For debugging we load also the trace package that was very helpful to

me.
 \RequirePackage{trace}%
 \errorcontextlines=␣% And we set an error info parameter.
 \fi
 \newcommand⋆\ifdtraceon{\if@debug\afterfi\traceon\fi}\ifdtraceon
 \newcommand⋆\ifdtraceoff{\if@debug\traceoff\fi}\ifdtraceoff

We load the core package:
 \RequirePackage{gmdoc}
 \ifgmcc@oldfonts
 \@ifpackageloaded{lmodern}{% TheLatinModern font family provides a light

condensed typewriter font that seems to be themost suitable for themargin-
par CS marking.

 \def\marginpartt{\normalfont\fontseries{lc}\ttfamily}}{}%\marginpartt
 \else
 \def\marginpartt{\fontspec{LMTypewriter␣LightCondensed}}%\marginpartt
 \fi

 \raggedbottom

 \setcounter{secnumdepth}{}% We wish only the parts and chapters to be
numbered.

 \renewcommand⋆\thesection{\arabic{section}}% isn’t it redundant at the\thesection
above setting?

 \@ifnotmw{}
 {% if MW class
 \@ifclassloaded{mwart}
 {% We set the indentation of Contents:
 \SetTOCIndents{{}{\quad}{\quad}{\quad}{\quad}{\quad}{%

\quad}}%
 }
 {% for mwart …
 \SetTOCIndents{{}{\bf.\enspace}{\quad}{\quad}{\quad}{%

\quad}{\quad}}%
 }% and for the two other mwclss.
 \pagestyle{outer}}% We set the page numbers to be printed in the outer and

bottom corner of the page.

 \def\titlesetup{\bfseries\sffamily}% We set the title(s) to be boldface\titlesetup
and sans serif.

 \if@gmccnochanges\let\RecordChanges\relax\fi% If the nochanges op-
tion is on, we discard writing out to the .glo file.

 \RecordChanges% We turn the writing the \changes out to the .glo file if not the
above.

Necessarily before recatcode’ing of L|Land \[\].

 \RequirePackage{amsfonts}
 \RequirePackage[intlimits]{amsmath}
 \RequirePackage{amssymb}

 \dekclubs⋆% We declare the club sign | to be a shorthand for \verb⋆ .
 \edverbs% to redefine \[so that it puts a shortverb in a \hbox.
 \smartunder% and we declare the _ char to behave as usual in the math mode and

outside math to be just an underscore.

 \exhyphenpenalty\hyphenpenalty% ’cause mwcls set it = due to Polish
customs.

 \def\EOFMark{\rightline{\ensuremath{\square}}}\EOFMark

 \DoNotIndex{\@nx␣\@xa␣%
 }

 \provide\ac{\acro}\ac

 \def\+{\-\penalty\@M\hskip\z@}␣% a discretionary hyphen that allows fur-\+
ther hyphenation

 \Xedekfracc

 \let\mch\metachar

 \ATfootnotes
 \AtBegInput{\ATfootnotes}

 \UrlFix

 \GMverbatimspecials

 \def\texcode@hook{\makestarlow}\texcode@hook

 \let\lv\leavevmode
 \CommandLet\ac\acro

 \def\OK{\acro{OK}\spifletter}\OK

(

 \pdef\oczko{;-)\spifletter}

 〈/ docc〉

The gmoldcomm package

 〈⋆oldcomm〉

Scan CSs and put them in tt. If at beginning of line, precede them with %. Obey lines in
the commentary.

 \newenvironment{oldcomments}{%oldcomments
 \catcode`\\=\active
 \let\do\@makeother
 \do\% Not only CSs but also special chars occur in the old comments.
 \do\|\do\#\do\{\do\}\do\^\do_\do\&%
 \gmoc@defbslash
 \obeylines
 \Store@Macro\finish@macroscan
 \def\finish@macroscan{%\finish@macroscan
 \@xa\gmd@ifinmeaning\macro@pname\of\gmoc@notprinted%
 {}{{\tt\ifvmode\%\fi\bslash\macro@pname}}%
 \gmoc@checkenv
 }%
 }{}

 {\escapechar\m@ne
 \xdef\gmoc@notprinted{\string\begin,\string\end}}

 \def\gmoc@maccname{macrocode}\gmoc@maccname
 \def\gmoc@ocname{oldcomments}\gmoc@ocname

 \foone{%
 \catcode`\[=␣\catcode`\]=
 \catcode`\{=␣\catcode`\}=␣}
 [\def\gmoc@checkenv[%\gmoc@checkenv
 \@ifnextchar{%
 [\gmoc@checkenvinn][]]%
 \def\gmoc@checkenvinn{#}[%\gmoc@checkenvinn
 \def\gmoc@resa[#]%\gmoc@resa

 \ifx\gmoc@resa\gmoc@maccname
 \def\next[%
 \begingroup
 \def\@currenvir[macrocode]%\@currenvir
 \Restore@Macro\finish@macroscan
 \catcode`\\=\z@
 \catcode`\{=␣\catcode`\}=
 \macrocode]%
 \else
 \ifx\gmoc@resa\gmoc@ocname
 \def\next[\end[oldcomments]]%
 \else
 \def\next[%
 \{#\}%
]%
 \fi
 \fi
 \next]%
]

 \foone{%
 \catcode`\/=\z@
 \catcode`\\=\active}
 {/def/gmoc@defbslash{%\gmoc@defbslash
 /let\/scan@macro}}

 \def\task##{}\task

 〈/ oldcomm〉
 〈⋆docstrip〉

A driver file to typeset dostrip.dtx with the gmdoc package.
GM //

 \PassOptionsToPackage{%
countalllines,codespacesgrey,indexallmacros}{gmdoc}

 \if
 \documentclass[debug,␣pagella,␣fontspec=quiet]{gmdocc}%
 \mcdiagOn
 \else
 \documentclass[pagella]{gmdocc}%
 \fi

 \ltxLookSetup
 \gmdoccMargins
 \twocoltoc% For towocolumn table of contents.

 \DeleteShortVerb\|
 \OldMakeShortVerb⋆\|% To define shortverb | such that it remains shortverb in

math mode (by default I define it to be | in math mode.

 \relaxen\ds
 \emptify\EOFMark

 \fooatletter{%
 \@ifXeTeX{%
 \let\gm@TrueAcute\'

 \def\'#{%
 \ifx\f@family\rmdefault
 \if␣n#\nacute
 \else\typeout{⋆⋆⋆⋆⋆⋆␣\cs{'}␣with␣argument␣}\show#
 \fi
 \else
 \gm@TrueAcute#%
 \fi
 }}{}}

 \HideAllDefining

 \begin{document}

 \def\BasePath{/home/natror/texmf/source/latex/base/}\BasePath
 \addtomacro\endabstract{\aftergroup\tableofcontents}
 \AtBegInputOnce{\date{Printed␣\today\\␣with␣\pk{gmdoc}␣

package␣by
 Natror}\let\date\gobble
 \let\renewenvironment\gobbletwo}% the only renewed env. in docstrip.

dtx is theglossary. I prefer it to be twocolumn.

 \OldDocInput{\BasePath␣docstrip.dtx}\BasePathdocstrip.dtx

 \typeout{%
 ^^JProduce␣change␣log␣with^^J%
 makeindex␣-r␣-s␣gmglo.ist␣-o␣\jobname.gls␣\jobname.glo^^J}

 \typeout{%
 ^^JProduce␣index␣with^^J%
 makeindex␣-r␣\jobname.idx^^J}

 \end{document}

 〈/ docstrip〉
 〈⋆LaTeXsource〉

Some Typesetting Remarks

This driver typesets The Source ε included in the TEXLive distribution. Some tricks
here are done just for fixing typos in the Source Files. The Source Files themselves are
intact.

Most probably you should redefine the \BasePath macro so that it was the path of
the \dots/source/latex/base directory on your system. The path levels should be sepa-
rated with slashes (even on Windows) and should also end with a slash (to concatenate
well with the file name).

While TEXing The Source again after a fatally erroneous pass there happened the
‘TEX capacity exceded error’ sometimes. TEXing once again was the right thing to do.

The hyperref package usually issues some warnings about non existence of some hy-
pertargets. I consider it rather a feature of hyperref (a bug?) than a bug in the typeset
file(s).

One more thing you shouldn’t bother of is the differences of the checksums, I mean
the usual gmdoc message that the checksum stated in the file differs from gmdoc’s own
count. That is O.K. since the checksum stated in a traditional .dtx is the number of

backslashes in the macrocodes while the checksum handled and expected by gmdoc is
the number of the escape chars. Don’t get the difference? Assume the declared code escape
char is \ (as usual) and consider \\ in the code. Due to the traditional counting this CS
increases the checksum by while due tomine by : the second bslash is not escape char:
it’s the CS name.

Moreover, when you declare \CodeEscapeChar\! e.g., the code

!Alice␣!\!has␣!an␣!aligator

increases the ‘new way’ checksum by not by as it would do the traditional one.

This driver uses an unofficial little package gmeometric to allow the \geometry com-
mand also inside document. This package is included in the drivers’ directory.

The Body

“This document will typeset the LATEX sources as a single document. This will produce
quite a large file (roughly pages) and may take a long time.

Some notes on processing this document are contained at the end of this document’s
source file, after \end{document} (not typeset).”

First a special index style for makeindex.

 \begin{filecontents}{gmsourcee.ist}
 preamble
 "\n␣\\begin{theindex}␣\n"
 postamble
 "\n\n␣\\end{theindex}\n"

file. May they be cursed!

 heading_prefix␣␣␣"{\\bfseries\\hfill␣"
 heading_suffix␣␣␣"\\hfill}\\nopagebreak\n"
 headings_flag␣␣␣␣␣␣␣

and just for sourcee:
Remove R so I is treated in sequence I J K not I II III

 page_precedence␣"rnaA"
 \end{filecontents}

 \PassOptionsToPackage{codespacesgrey,␣indexallmacros}{gmdoc}

 \if
 \documentclass[debug,␣minion,␣cronos,␣cursor,␣

fontspec=quiet]{gmdocc}%

 \mcdiagOn

 \else
 \documentclass[fontspec=quiet]{gmdocc}%
 \fi

 \foone{\catcode`_=␣}
 {\if␣\includeonly{sourcee_by_gmdoc}\fi}

 \usepackage{gmoldcomm}% Definitions of oldcomments and \task.

 \listfiles

 \ltxLookSetup

 \gmdoccMargins
 \olddocIncludes% This is the crucial declaration to drive gmdoc into the tradi-

tional settings.
 \twocoltoc% For towocolumn table of contents.

 \DeleteShortVerb\|
 \OldMakeShortVerb⋆\|% To define shortverb | such that it remains shortverb in

math mode (by default I define it to be | in math mode.

Do not index some TeX primitives, and some common plain TeX commands.

 \DoNotIndex{\def,\long,\edef,\xdef,\gdef,\let,\global}
 \DoNotIndex{\if,\ifnum,\ifdim,\ifcat,\ifmmode,\ifvmode,%

\ifhmode,%
 \iftrue,\iffalse,\ifvoid,\ifx,\ifeof,\ifcase,%

\else,\or,\fi}
 \DoNotIndex{\box,\copy,\setbox,\unvbox,\unhbox,\hbox,%
 \vbox,\vtop,\vcenter}
 \DoNotIndex{\@empty,\immediate,\write}
 \DoNotIndex{\egroup,\bgroup,\expandafter,\begingroup,%

\endgroup}
 \DoNotIndex{\divide,\advance,\multiply,\count,\dimen}
 \DoNotIndex{\relax,\space,\string}
 \DoNotIndex{\csname,\endcsname,\@spaces,\openin,\openout,%
 \closein,\closeout}
 \DoNotIndex{\catcode,�endinput}
 \DoNotIndex{\jobname,\message,\read,\the,\m@ne,\noexpand}
 \DoNotIndex{\hsize,\vsize,\hskip,\vskip,\kern,\hfil,\hfill,%

\hss}
 \DoNotIndex{\m@ne,\z@,\z@skip,\@ne,\tw@,\p@}
 \DoNotIndex{\dp,\wd,\ht,\vss,\unskip}

Set up the Index and Change History to use \part.

 \makeatletter
 \def\indexdiv{\part⋆}\indexdiv
 \AtDIPrologue{\@ifnotmw{%
 \markboth{Index}{Index}%
 \addcontentsline{toc}{part}{Index}}{}%
 }

 \GlossaryPrologue{\part⋆{Change␣History}%

Allow control names to be hyphenated here…

 {\GlossaryParms\ttfamily\hyphenchar\font=`\-}%
 \@ifnotmw{%
 \markboth{Change␣History}{Change␣History}%
 \addcontentsline{toc}{part}{Change␣History}}{}%
 }

“The standard \changes command modified slightly to better cope with this mul-
tiple file document.”— Not quite:

 \makeatletter

% \def\changes@###{%
% \let\protect\@unexpandable@protect

% \edef\@tempa{\noexpand\glossary{#\space\currentfile%
\space#\levelchar

% \ifx\saved@macroname\@empty
% \space
% \actualchar
% \generalname
% \else
% \expandafter\@gobble
% \saved@macroname
% \actualchar
% \string\verb\quotechar⋆%
% \verbatimchar\saved@macroname
% \verbatimchar
% \fi
% :\levelchar #}}%
% \@tempa\endgroup\@esphack}

 \makeatother

Produce a Change Log and (column) Index.

 \RecordChanges
 \CodelineIndex
 \EnableCrossrefs
 \setcounter{IndexColumns}{}

Needed for documentation in ltoutenc.dtx.

 \usepackage{textcomp}

 \olddocIncludes
 \HideAllDefining

 \fooatletter{%
 \@ifXeTeX{%
 \def\"#{%
 \if␣o#\oumlaut\fi
 \if␣u#\uumlaut\fi
 }}{}}

 \foone{\makeatletter\catcode`\#=␣}{%
 \def\gmd@wykrzykniki{#␣#␣#␣#␣#␣#␣#␣#␣#}}\gmd@wykrzykniki

 \begin{document}

 \title{The␣\LaTeXe\␣Sources\thanks{Typeset␣with␣\pk{gmdoc}␣
by␣Natror

 on␣\today.}}
 \author{%
 Johannes␣Braams\\
 David␣Carlisle\\
 Alan␣Jeffrey\\
 Leslie␣Lamport\\
 Frank␣Mittelbach\\
 Chris␣Rowley\\
 Rainer␣Sch\"opf}

 \def\BasePath{/home/natror/texmf/source/latex/base/}\BasePath

This command will be used to input the patch file if that file exists.

 \newcommand{\includeltpatch}{%\includeltpatch
 \def\currentfile{ltpatch.ltx}\currentfile
 \part{ltpatch}
 {\let\ttfamily\relax
 \xdef\filekey{\filekey,␣\thepart={\ttfamily%

\currentfile}}}%
 Things␣we␣did␣wrong\ldots
 \IndexInput{ltpatch.ltx}}

Get the date from ltvers.dtx

 \makeatletter
 \let\patchdate=\@empty
 \begingroup
 \def\ProvidesFile#\fmtversion#{\date{#}�endinput}\ProvidesFile
 \input{\BasePath␣ltvers.dtx}
 \global\let\X@date=\@date

Add the patch version if available.

 \long\def\Xdef###\def##{%\Xdef
 \xdef\X@date{#}%
 \xdef\patchdate{#}%
 �endinput}%
 \InputIfFileExists{ltpatch.ltx}
 {\let\def\Xdef}{\global\let\includeltpatch\relax}\Xdef
 \endgroup

 \ifx\@date\X@date
 \def\Xpatch{}\Xpatch
 \ifx\patchdate\Xpatch\else
 \edef\@date{\@date\space␣Patch␣level␣\patchdate}
 \fi
 \else
 \@warning{ltpatch.ltx␣does␣not␣match␣ltvers.dtx!}
 \let\includeltpatch\relax
 \fi
 \makeatother

 \pagenumbering{roman}
 \thispagestyle{empty}

 \maketitle
 \relax
 \emptify\maketitle

 \tableofcontents

 \clearpage

 \pagenumbering{arabic}

“Each of the following \DocInclude lines includes a file with extension .dtx. Each
of these files may be typeset separately. For instance

latex␣ltboxes.dtx

will typeset the source of the LATEX box commands.”

(Well, I (Natror) prepared only this common driver.)
If this file is processed, each of these separate .dtx files will be contained as a part of

a single document. Using ltxdoc.cfg you can then optionally produce a combined index
and/or change history for the entire source of the format file. Note that such a document
will be quite large (about pages).

 \DocInclude[\BasePath]{ltdirchk}␣% System dependent initialisation

 \AfterMacrocode{}{\def\do{\cs{do}}}% A bare \do in narration on line
.

 \DocInclude[\BasePath]{ltplain}␣␣% LaTeX version of Knuth’s plain.tex.

 \DocInclude[\BasePath]{ltvers}␣␣␣% Current version date.

 \DocInclude[\BasePath]{ltdefns}␣␣% Initial definitions.

 \DocInclude[\BasePath]{ltalloc}␣␣% Allocation of counters and others.

 \DocInclude[\BasePath]{ltcntrl}␣␣% Program control macros.

 \DocInclude[\BasePath]{lterror}␣␣% Error handling.

 \DocInclude[\BasePath]{ltpar}␣␣␣␣% Paragraphs.

 \DocInclude[\BasePath]{ltspace}␣␣% Spacing, line and page breaking.

 \DocInclude[\BasePath]{ltlogos}␣␣% Logos.

 \DocInclude[\BasePath]{ltfiles}␣␣% \inputfiles and related commands.

 \AtBegInputOnce{\let\task\gobble}% In general \task gobbles two, but in
this file it’s usedwith one argument and next to it is \changes (which in gmdoc
is \outer so gobbling it raises an error).

 \DocInclude[\BasePath]{ltoutenc}␣% Output encoding interface.

 \DocInclude[\BasePath]{ltcounts}␣% Counters.

 \DocInclude[\BasePath]{ltlength}␣% Lengths.

 \DocInclude[\BasePath]{ltfssbas}␣% NFSS Base macros.

 \DocInclude[\BasePath]{ltfsstrc}␣% NFSS Tracing (and tracefnt.sty).

 \DocInclude[\BasePath]{ltfsscmp}␣% NFSS Compatibility.

 \DocInclude[\BasePath]{ltfssdcl}␣% NFSS Declarative interface.

 \DocInclude[\BasePath]{ltfssini}␣% NFSS Initialisation.

 \DocInclude[\BasePath]{fontdef}␣␣% fonttext.ltx/fontmath.ltx

 \DocInclude[\BasePath]{preload}␣␣% preload.ltx

 \DocInclude[\BasePath]{ltfntcmd}␣% \textrm etc.

 \DocInclude[\BasePath]{ltpageno}␣% Page numbering.

 \DocInclude[\BasePath]{ltxref}␣␣␣% Cross referencing.

 \AfterMacrocode{}{\let\GMDebugCS\cs
 \def\cs##{\expandafter\GMDebugCS\expandafter{\string##}}}\cs

\cs{\@defaultsubs} on line , \cs{\@refundefined} on line . It’s the
first step. The next is done before \PrintChanges.

 \AfterMacrocode{}{\let\cs\GMDebugCS}
 \AfterMacrocode{}{% The last\changeshave second argument{///}.

 \csname␣changes\endcsname{v.i}{//}{\cs{literal}␣
added}%

 \csname␣changes\endcsname{v.r}{//}{\cs{literal}␣
removed}%

 \gdef\GMdebugChanges{\expandafter\def\csname
 changes\endcsname############{}}%
 \aftergroup\GMdebugChanges}% A trick with \aftergroup ’cause that

macrocode is inside macro.
 \DocInclude[\BasePath]{ltmiscen}␣% Miscellaneous environment defini-

tions.

 \DocInclude[\BasePath]{ltmath}␣␣␣% Mathematics set up.

 \DocInclude[\BasePath]{ltlists}␣␣% List and related environments.

 \DocInclude[\BasePath]{ltboxes}␣␣% Parbox and friends.

 \DocInclude[\BasePath]{lttab}␣␣␣␣% tabbing, tabular and array.

 \DocInclude[\BasePath]{ltpictur}␣% Picture mode.

 \DocInclude[\BasePath]{ltthm}␣␣␣␣% Theorem environments.

 \DocInclude[\BasePath]{ltsect}␣␣␣% Sectioning.

 \DocInclude[\BasePath]{ltfloat}␣␣% Floats.

 \DocInclude[\BasePath]{ltidxglo}␣% Index and Glossary.

 \DocInclude[\BasePath]{ltbibl}␣␣␣% Bibliography.

 \DocInclude[\BasePath]{ltpage}␣␣␣% \pagestyle, \raggedbottom, \sloppy.

 \DocInclude[\BasePath]{ltoutput}␣% Output routine.

 \DocInclude[\BasePath]{ltclass}␣␣% Package & Class interface.

 \DocInclude[\BasePath]{lthyphen}␣% Hyphenation (hyphen.ltx).

 \DocInclude[\BasePath]{ltfinal}␣␣% Lastminute initialisations anddump.

 \includeltpatch␣␣␣␣␣␣␣% Corrections distributed after the full release.

Stop here if ltxdoc.cfg says \AtEndOfClass{\OnlyDescription}

 \StopEventually{\end{document}}

 \clearpage
 \pagestyle{headings}

Make TEX shut up.

 \hbadness=
 \newcount\hbadness\hbadness
 \hfuzz=\maxdimen

 \typeout{%
 ^^JProduce␣change␣log␣with^^J%
 makeindex␣-r␣-s␣gmglo.ist␣-o␣\jobname.gls␣\jobname.glo^^J}

 {% The next step of debug of ltmiscen.dtx’s \changes...{...\cs{\@default¦
subs...}} etc.
How does it work? Remember \cs is robust. The typo lies in giving it a CS
argument instead of expected CS name without backslash. So, in the step

 we only \string the argument CS to let it be written outto the .glo file.
Then, in step , we redefine \cs to first \string its argument inside an \if.
Remember that \if expands two tokens next to it until it finds sth. unex-
pandable, so it’ll execute \string. Then, if the first char of the \stringed
argument is \, the condition is satisfied and \if...\fi expands to what
follows that backslash and precedes \else. So if the argument was a CS, its
backslash will be gobbled by \if. Otherwise \if...\fi expands to what
is between \else and \fi, to the unchanged argument that is. Then to that
list of tokens the original \cs is applied.

 \let\GMDebugCS\cs
 \def\cs#{\GMDebugCS{\if\bslash\string#\else#\fi}}%\cs
 \PrintChanges}

 \typeout{%
 ^^JProduce␣index␣with^^J%
 makeindex␣-r␣-s␣gmsourcee.ist␣\jobname.idx^^J}

“Makeindex needs a symbol between the parts of composite page numbers but we
dont want one, so:”—I skip that.

% \begingroup
% \def\endash{--}
% \catcode`\-\active
% \def-{\futurelet\temp\indexdash}
% \def\indexdash{\ifx\temp-\endash\fi}

 \geometry{bottom=.cm}
 \clearpage

 \PrintIndex

Make sure that the index is not printed twice (ltxdoc.cfg might have a second

Index

Numbers written in italic refer to the code lines where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in roman
refer to the code lines where the entry is used. The numbers preceded with ‘p.’ are page
numbers. All the numbers are hyperlinks.

\+, p. , , ,
\-, , ,
\<…>, p.
\@@codeline@wrindex,
\@@par, , , ,

,
\@@settexcodehangi,

, ,
\@EOF, ,
\@M, ,
\@MakeShortVerb,
\@NoEOF, ,
\@XA,
\@aalph, ,
\@aftercodegfalse,

, ,

\@aftercodegtrue, ,
, , ,
, ,

\@afternarrgfalse,
, , ,
, ,

\@afternarrgtrue,
\@allbutfirstof,
\@begindocumenthook,

\@beginputhook, ,

, ,
\@charlb,
\@charrb,
\@clubpenalty,
@codeskipput, p.

\@codeskipputgfalse,
, , ,
, , ,

\@codeskipputgtrue,
, , ,
, , ,
, ,

\@codetonarrskip, ,
, , ,
, , ,
,

\@countalllinestrue,
,

\@ctrerr,
\@currenvir, , ,

, , ,

\@currext,
\@dc@InnerName, ,
\@dc@argtypes,
\@debugtrue,
\@defentryze, ,

, , ,
,

\@docinclude, ,
\@dsdirgfalse, ,

, , ,
,

\@dsdirgtrue, ,
\@emptify, , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
,

\@endinputhook, ,
,

\@enumctr, , ,
,

\@fileswfalse,
\@firstofmany, ,

, , ,
, ,

\@firstofone, ,
,

\@firstofthree,
\@glossaryfile,
\@gmcc@tikz@true,
\@gmccnochangestrue,
\@ifEOLactive, ,

, , ,
\@ifQueerEOL, ,

, , ,
, , ,

\@ifXeTeX, , ,
\@ifauthor, , ,
\@ifinmeaning, ,
\@ifnextac,
\@ifnextcat, ,
\@ifnextcharRS, ,

, , ,
\@ifnonempty,
\@ifnotmw, , ,
\@ilgroupfalse, ,
\@ilgrouptrue, ,

,
\@indexallmacrostrue,

\@latexerr,
\@linesnotnumtrue,
\@ltxDocIncludetrue,
\@makefntext,

\@marginparsused¦
false,

\@marginparsusedtrue,
, , ,

\@nameedef, ,
\@newlinegfalse, ,

, , ,
\@newlinegtrue, ,
\@noindextrue,
\@nostanzagfalse,
\@nostanzagtrue, ,

\@oldmacrocode, ,
\@old¦

macrocode@launch,
, ,

\@onlypreamble, ,
, ,

\@pageinclindexfalse,

\@pageinclindextrue,
\@pageindexfalse,
\@pageindextrue, ,

,
\@printalllinenos¦

false,

\@printalllinenos¦
true,

\@relaxen, , ,
, , ,
, , ,
, , ,
,

\@secondofthree, ,

\@stripstring, , ,
\@sverb@chbsl,
\@tempc,
\@tempdima, ,
\@textsuperscript,

,
\@trimandstore, ,

, , ,
,

\@trimandstore@hash,
,

\@trimandstore@ne,
,

\@uresetlinecount¦
true,

\@usgentryze, ,
, , ,

, , ,
,

\@variousauthors¦
false,

\@variousauthorstrue,

\@warning,
\@xanxcs, , ,

, , ,
, ,

\@xiispaces,
\@zf@euenctrue,
^^A, p. ,
^^B, p. ,
\^^M, p. ,
^^M, ,
^^U,
^^V,

\aalph, ,
\abovedisplayskip,
\ac, ,
\acro, , , ,
\actualchar, p. , ,

, , ,
, , ,
,

\addcontentsline, ,

\addfontfeature, ,
,

\addto@estoindex, ,
, , ,
,

\addto@estomarginpar,
, , ,
, ,

\addtocontents,
\addtomacro, , ,

, , ,
, , ,
, , ,
, , ,
, ,

\AddtoPrivateOthers,
p. ,

\ae,
\afterassignment, ,

\afterfi, , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

, , ,
, , ,
, , ,
, ,

\afterfifi, , ,
, , ,
, ,

\afteriffifi,
\AfterMacrocode, p. ,

, , ,
, ,

\agrave, ,
\all@stars,
\all@unders,
\AlsoImplementation,

p. , ,
\AltMacroFont,
\ampulexdef, ,
\AmSTeX, p.
\and, , ,
\arg, p.
\arraybackslash,
article,
\askforoverwrite¦

false,

\AtBeginDocument, ,
, , ,
, , ,
, , ,
, , ,

\AtBegInput, p. , ,
, , ,
, , ,
, , ,
,

\AtBegInputOnce, p. ,
, , ,
, , ,

\AtDIPrologue, p. ,
, ,

\AtEndDocument, ,
,

\AtEndInput, p. , ,
, ,

\AtEndOfClass, ,
, , ,
,

\AtEndOfPackage, ,
,

\ATfootnotes, ,
\author, , ,

, , ,

\AVerySpecialMacro,

\BasePath, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
,

\BasePath␣
docstrip.dtx,

\batchfile,
\batchmode, ,
\beforeDot, ,
\belowdisplayshort¦

skip, , ,

\belowdisplayskip,
\beth,
\BibTeX, p.
\box,
\breakablevisspace,

, ,
\breakbslash,
\breaklbrace,
\bslash, , , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, ,

\BundleInfoFromName,

\c@ChangesStartDate,
, , ,
, ,

\c@CheckSum, , ,
, , ,

\c@codelinenum, ,
, , ,

\c@DocInputsCount,
\c@footnote, ,
\c@GlossaryColumns,

, ,

\c@gmd@mc, , ,
,

\c@IndexColumns, ,
, ,

\c@StandardModuleDepth,

\cacute, ,
\catactive, p. ,
\catletter, p. ,
\catother, p. ,
\CDAnd, p. ,
\CDPerc, p. ,
\CH,
\changes, , ,
\changes@, , ,

, , ,
\ChangesGeneral, ,

\ChangesStart, p. ,
ChangesStartDate, p.
\Character@Table, ,

\CharacterTable,
\check@checksum, ,

\check@percent, ,
\check@sum, , ,

, , ,
\CheckModules,
CheckSum,
\CheckSum, p. , ,

, ,
\chgs,
ChneOelze,
\chschange, , ,

, ,
\chschange@, ,
\chunkskip, p. , p. ,
class,
\clubpenalty, ,
\cmd,
\Code@CommonIndex,

,
\Code@CommonIndexStar,

,
\Code@DefEnvir, ,
\Code@DefIndex, ,

, ,
\Code@DefIndexStar,

, ,
\Code@DefMacro, ,
\Code@Delim, ,
\code@delim, , ,

, , ,
, , ,
, , ,

, , ,
,

\Code@Delim@St, ,
,

\code@escape@char,
,

\Code@MarginizeEnvir,
,

\Code@MarginizeMacro,
, , ,
, , ,

\Code@UsgEnvir, ,
\Code@UsgIndex, ,

, ,
\Code@UsgIndexStar,

,
\Code@UsgMacro, ,
\CodeCommonIndex, p. ,

,
\CodeDelim, p. , p. ,

, , ,
, , ,

\CodeEscapeChar, p. ,
, , ,
,

\CodeIndent, p. , p. ,
, , ,
, , ,

\codeline@glossary,
,

\codeline@wrindex,
, , ,

\CodelineIndex, ,
, ,

codelinenum, p. , ,

\CodelineNumbered,
p. , ,

\CodeMarginize, p. ,
\CodeSpacesBlank, p. ,

, ,
codespacesblank, p. ,

\CodeSpacesGrey, p. ,

,
codespacesgrey, p. ,
\CodeSpacesSmall,
\CodeSpacesVisible,

, ,
\CodeTopsep, p. , ,

, , ,
, , ,
, , ,
, ,

\codett, , , ,

\CodeUsage, p. ,

\CodeUsgIndex, p. ,
\color, ,
\columnsep,
\CommandLet,
\CommonEntryCmd, p. ,

,
\continue@macroscan,

,
\copy,
\copyRightLeaf,
copyrnote, p. ,
\count,
countalllines, p. ,
countalllines⋆, p. ,
cronos, p. ,
\CS, p.
\cs, p. , , , ,

, , ,
, , ,
, , ,

\csnameIf, ,
\currentBundle,
\currentfile, ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

cursor, p. ,

\daleth,
\date, , , ,

, , ,
,

\day, ,
\dc,
\DCUse,
debug, p. ,
\debug@special,
\Declare@Dfng, ,

,
\Declare@Dfng@inner,

, ,
\DeclareBoolOption,

,
\DeclareCommand, ,

, , ,
, , ,
, , ,
, , ,
,

\DeclareComplemen¦
taryOption, ,

\DeclareDefining, p. ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

\DeclareDocumentCom¦
mand,

\DeclareDOXHead, p. ,
\DeclareEnvironment,

,
\DeclareKVOFam, p. ,
\DeclareOption, ,

, , ,
, , ,
, , ,
,

\DeclareOptionX, ,
, , ,
,

\declarepreamble,
\DeclareRobustCom¦

mand,

\DeclareStringOption,
,

\DeclareTextCommand,
\DeclareTextCommand¦

Default,

\DeclareVoidOption,
,

\defaultfontfeatures,

\DefaultIndexExclu¦
sions, p. , ,
,

\DefEntry, p. , ,
\DefIndex, p. , ,
\Define, p. ,
\define@boolkey, ,

\define@choicekey,

,
\define@key, , ,

,
\definecolor,
\dekclubs, p. ,
\DeleteShortVerb, p. ,

, ,

\Describe, p. ,
\Describe@Env, ,

, ,
\Describe@Macro, ,

,
\DescribeEnv, p. ,
\DescribeMacro, p. ,
\destdir,
\detokenize, , ,

, , , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
,

\dimen,
\DisableCrossrefs,

,
\discre,
\divide,
\division, p. , ,
\Do@Index, ,
\do@properindex, ,

,
\Doc@Input,
\DocInclude, p. , p. ,

p. , , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

\DocInput, p. , ,
, ,

DocInputsCount,
\docstrips@percent,
\documentclass, ,

, , ,
,

\DoIndex, p. , , ,

\DoNot@Index, ,
\DoNotIndex, p. , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, ,

\dont@index, , ,
, ,

\DontCheckModules,
\doprivateothers, ,

, ,
\dp,
\ds, p. , , ,
\dst,
\dsVerbClose,

\eacute, ,
\edefInfo, , , ,

, , ,
,

\edverbs,
\egCode@MarginizeEnvir,

,
\egCode@MarginizeMacro,

,
\egText@MarginizeCS,

,
\egText@MarginizeEnv,

,
\emptify, , ,

, , ,
, , ,
, , ,
,

\EnableCrossrefs, ,
, ,

\encapchar, p. , ,
, , ,

\endabstract,
\endenumargs,
\endenumerate,
\endenvironment,
\endinput,
\endlinechar, , ,

, , ,
\endmacro,
\endmacrocode,
\endoldmc,
\endpreamble,
\endskiplines, p. ,
\endtheglossary,
\endverbatim,
\enspace, ,
\ensuremath,

\EntryPrefix, p. , ,
, , ,
, ,

\enumargs,
enumargs, p.
enumargs⋆, p. ,
\enumerate,
\env, p. ,
\environment,
environment, p. ,
\envirs@toindex, ,

, , ,
,

\envirs@tomarginpar,
, , ,
,

\EOF,
\EOFMark, p. , p. ,

, , ,
,

\EOFMark�endinput,
\EOLwasQueer, ,
\errorcontextlines,

, , ,
\eTeX, p.
\evensidemargin,
\everyeof, p. ,
\everypar, , ,

, , ,
, , ,
, , ,
, , ,

\ExecuteOptionsX,
\exhyphenpenalty,

\f@family,
\file, p. , , , ,

,
\filedate, p. , ,

, , ,
, ,

\filediv, , ,
, , ,

\filedivname, ,
, , ,
, , ,
,

\FileInfo, p. ,
\fileinfo, p. ,
\FileInfoFromName,

,
\filekey, , ,

,
\filename, ,
\filenote, p. , ,

,

\filesep, , ,
,

\fileversion, p. ,
, , ,
, , ,
,

\Finale, p. , ,
\finish@macroscan,

, , ,
, , ,
,

\Finv,
\firstoftwo,
\fmtversion,
\fnfileinfo,
\fontseries,
\fontspec,
fontspec,
\fooatletter, ,

, ,
\foone, , , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

\from, , , ,
\FromDir, , ,
\fullcurrentfile, ,

,

\g@emptify, , ,
, , ,
, , ,

\g@relaxen, , ,
, , ,
,

\gaddtomacro, p. ,
, , ,
,

\gag@index, , ,
,

\Game,
\GeneralName, ,

, , ,
,

\generalname, ,
, , ,

\generate,
\geometry, ,
\GetFileInfo, p. , ,

, , ,
\gimel,
\glet, , , ,

, , ,

, , ,
,

\glossary@prologue,
, , ,
,

\glossaryentry,
\GlossaryMin, p. , ,

,
\GlossaryParms, p. ,

, ,
\GlossaryPrologue,

p. , ,
\glueexpr, , ,
\gm@DOX, , , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, ,

\gm@EOX, ,
\gm@lbracehook,
\gm@TrueAcute, ,
\gm@verb@eol, ,
\gmath,
\gmboxedspace, ,

, ,
\gmBundleFile, , ,

, , , ,
, ,

\gmBundleName, ,
\gmcc@\BasePath␣

docstrip.dtx,

\gmcc@article,
\gmcc@CLASS, , ,

,
\gmcc@class, , ,

, ,
\gmcc@cronos,
\gmcc@cursor,
\gmcc@debug,
\gmcc@dff, , ,
\gmcc@fontspec,
\gmcc@lsu,
\gmcc@minion,
\gmcc@mptt,
\gmcc@mwart,
\gmcc@mwbk,
\gmcc@mwclsfalse,
\gmcc@mwclstrue,
\gmcc@mwrep,
\gmcc@myriad,
\gmcc@nochanges,
\gmcc@noindex,
\gmcc@oldfontsfalse,

,

\gmcc@oldfontstrue,
\gmcc@outeroff,
\gmcc@pagella,
\gmcc@resa, ,
\gmcc@setfont, ,

,
\gmcc@sysfonts,
\gmcc@tikz,
\gmcc@tout, , ,
\gmcc@trebuchet,
\gmd@@toc, , ,
\gmd@ABIOnce, ,

, ,
\gmd@adef@altindex,

, , ,
, , ,

\gmd@adef@checkDOXopts,
,

\gmd@adef@checklbracket,
,

\gmd@adef@cs,
\gmd@adef@cshookfalse,

\gmd@adef@cshooktrue,

\gmd@adef@currdef,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
,

\gmd@adef@defaulttype,
, ,

\gmd@adef@deftext,
,

\gmd@adef@dfKVpref,
, , ,

\gmd@adef@dk,
\gmd@adef@dofam, ,

, , ,
\gmd@adef@dox,
\gmd@adef@fam, ,

, , ,
, , ,
,

\gmd@adef@indextext,
, ,

\gmd@adef@KVfam,
\gmd@adef@KVpref,
\gmd@adef@prefix,
\gmd@adef@scanDKfam,

,
\gmd@adef@scanDOXfam,

, ,

\gmd@adef@scanfamact,
,

\gmd@adef@scanfamoth,
,

\gmd@adef@scanKVpref,
, , ,
,

\gmd@adef@scanname,
, ,

\gmd@adef@selfrestore,
, , ,

\gmd@adef@setkeysdefault,
,

\gmd@adef@setKV, ,
, ,

\gmd@adef@settype,
, , ,
, , ,
, , ,
,

\gmd@adef@text,
\gmd@adef@TYPE, ,
\gmd@adef@type,
\gmd@adef@typenr, ,

\gmd@adef@typevals,
\gmd@auxext, , ,

,
\gmd@blubra, , ,

, ,
\gmd@bslashEOL, ,

,
\gmd@changes@init,

, , ,
, ,

\gmd@charbychar, ,
, , ,
, , ,
, , ,
, , ,
,

\gmd@checkifEOL, ,
\gmd@checkifEOLmixd,

,
\gmd@chgs, , ,

,
\gmd@chgs@parse, ,

, ,
\gmd@chgsplus, ,
\gmd@chschangeline,

, , ,
\gmd@closingspacewd,

, , ,
\gmd@codecheckifds,
\gmd@codeskip, ,

, , ,

\gmd@continuenarration,
, ,

\gmd@countnarrline@,
,

\gmd@counttheline,
, ,

\gmd@cpnarrline, ,
, , ,
, ,

\gmd@ctallsetup, ,
, ,

\gmd@currentlabel@before,
,

\gmd@currenvxistar,
,

\gmd@DefineChanges,
,

\gmd@detectors, ,
, , ,
, , ,

\gmd@difilename, ,

\gmd@dip@hook, ,
,

\gmd@docincludeaux,
, ,

\gmd@docstripdirective,
, ,

\gmd@docstripinner,
,

\gmd@docstripverb,
,

\gmd@doindexingtext,
, ,

\gmd@doIndexRelated,
, ,

\gmd@dolspaces, ,
,

\gmd@DoTeXCodeSpace,
, , ,
,

\gmd@dsChecker, ,
,

\gmd@dsNarrChecker,
, ,

\gmd@dsVerbChecker,
,

\gmd@dsVerbDelim, ,
, , ,

\gmd@dsVerbfalse,
\gmd@dsVerbtrue,
\gmd@ea@bwrap, ,

, , ,
, , ,
, , ,
,

\gmd@ea@ewrap, ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

\gmd@ea@hashes, ,
, ,

\gmd@ea@wraps, ,
, ,

\gmd@ea@xxxwd, ,
,

\gmd@eatlspace, ,
,

\gmd@edefInfo@resa,
, , ,
, , ,

\gmd@endpe, , ,
, ,

\gmd@EOLorcharbychar,
,

\gmd@evpaddonce, ,
\gmd@fileinfo, ,
\gmd@finishifstar,

, ,
\gmd@FIrescan, ,
\gmd@glossary, ,

,
\gmd@glossCStest, ,

, ,
\gmd@gobbleuntilM,

,
\gmd@grefstep, ,

, , ,
, ,

\gmd@guardedinput,
,

\gmd@iedir, , ,
\gmd@ifinmeaning,
\gmd@ifonetoken, ,

, ,
\gmd@ifsingle, ,
\gmd@iihook, , ,

\gmd@inputname, ,

, , ,
\gmd@inverb, , ,

\gmd@jobname, ,
\gmd@justadot, ,

, , ,
\gmd@KVprefdefault,

, , ,
, ,

\gmd@lastenvir,

\gmd@lbracecase, ,
, , ,
, , ,

\gmd@ldspaceswd, ,
, , ,
, , ,

\gmd@maybequote, ,
, , ,
,

gmd@mc,
\gmd@mcdiag, , ,

,
\gmd@mchook,
\gmd@modulehashone,

, , ,
, ,

\gmd@narrcheckifds,
,

\gmd@nlperc, , ,
,

\gmd@nocodeskip, ,
, , ,
, , ,

\gmd@oldmcfinis,
\gmd@oncenum, , ,

, , ,
\gmd@parfixclosingspace,

,
\gmd@percenthack, ,

\gmd@preverypar, ,

, , ,
, , ,
,

\gmd@providefii, ,

\gmd@QueerU, , ,

\gmd@QueerUV, ,
,

\gmd@QueerV, , ,

\gmd@quotationname,
, ,

\gmd@resa, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
,

\gmd@resetlinecount,
, ,

\gmd@ResumeDfng, ,
\gmd@revprefix, ,
\gmd@setChDate, ,

,

\gmd@setclosingspacewd,

\gmd@setclubpenalty,
, , ,

\gmd@setilrr, ,
, ,

\gmd@skipgmltext, ,
,

\gmd@skiplines, ,
\gmd@spacewd, ,

,
\gmd@texcodeEOL, ,

\gmd@texcodespace,

, , ,
, , ,

\gmd@textEOL, ,
, , ,
, , ,
, ,

\gmd@threeway, ,
\gmd@toCTAN@, ,
\gmd@typesettexcode,

, ,
\gmd@upperDIV, ,
\gmd@UV@percent, ,

, ,
\gmd@UVdefs, , ,

\gmd@writeckpt, ,
\gmd@writeFI, ,
\gmd@writemauxinpaux,

,
\gmd@wykrzykniki, ,

, , ,
, , ,

\GMdebugChanges, ,

\GMDebugCS, , ,
, ,

\gmdindexpagecs, ,

\gmdindexrefcs, ,
,

\gmdLeaf, ,
\gmdmarginpar, p. ,

p. , , ,
\gmdnoindent, p. ,
\gmdoccMargins, ,

, , ,
\gmdoccMar¦

gins@params, ,
,

\gmdocIncludes, p. ,
, ,

\gmdStandalone,

\gmfile, , ,
\gmFileDate,
\gmFileInfo,
\gmFileKind, , ,
\gmFileVersion,
gmglo.ist,
\gmhypertarget,
\gmiflink,
gmlonely, p. , ,
\gmobeyspaces,
\gmoc@checkenv, ,
\gmoc@checkenvinn,

,
\gmoc@defbslash, ,
\gmoc@maccname, ,
\gmoc@notprinted, ,

\gmoc@ocname, ,
\gmoc@resa, , ,
\gmOutName, , , ,

, , , ,
, ,

\gmOutThanks, ,
\gmOutTitle, ,
\gmOutYears, , ,
\gmu@if,
\gmu@ifedetokens,
\gmu@ifsbintersect,

,
\gmu@ifstar, , ,

, , ,
, , ,
, , ,
, , ,
,

\gmu@ifundefined, ,
, , ,

\gmu@ifxany, , ,
, , ,
, ,

\gmu@resa, , ,
,

\gmu@tempa, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

\gmu@tempb, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
,

\gmu@tempc,
\gmu@tempd,
\gmu@tempe,
\gmu@tempf,
\gmu@xistar, ,
\gmv@hyphen,
\GMverbatimspecials,
\gn@melet, ,
\gobble, , , ,

,
\gobbletwo,
\grefstepcounter,
\grelaxen, ,

\hash,
\hb@xt@,
\hbadness, ,
\heshe, p.
\hfuzz,
\hgrefstepcounter,

,
\Hide@Dfng, ,
\Hide@DfngOnce, ,
\HideAllDefining, p. ,

, , ,
\HideDef, p. ,
\HideDefining, p. ,

,
\HLPrefix, p. , ,

, , ,
, , ,
, ,

\hsize,
\Hybrid@DefEnvir, ,

\Hybrid@DefMacro, ,

hyperindex, p.
\hyperlabel@line, ,

, , ,
\hypersetup, ,

\hyphenpenalty, ,

\idiaeres, ,
\if@aftercode, ,

, , ,
, , ,
, , ,
, ,

\if@afternarr, ,
, , ,
, ,

\if@codeskipput, ,
, , ,
, , ,
, , ,

\if@countalllines,
,

\if@debug, , ,
,

\if@dsdir, ,
\if@filesw, , ,

,
\if@gmcc@tikz@, ,
\if@gmccnochanges,

,
\if@ilgroup, , ,

, , ,
,

\if@indexallmacros,
,

\if@linesnotnum, ,
,

\if@ltxDocInclude,
, , ,

\if@marginparsused,
,

\if@newline, , ,
, , ,

\if@noindex, ,
\if@nostanza, ,
\if@pageinclindex,

, ,
\if@pageindex, ,

, , ,
, , ,
,

\if@printalllinenos,
, ,

\if@RecentChange, ,

\if@uresetlinecount,
,

\if@variousauthors,
,

\ifcsname, , , ,
, , , ,
, , ,

\ifdefined, , ,
, , ,

\ifdtraceoff,
\ifdtraceon,
\ifgmcc@mwcls, ,

, ,
\ifgmcc@oldfonts, ,

,
\ifgmd@adef@cshook,

,
\ifgmd@adef@star, ,

\ifgmd@dsVerb, ,

,
\ifgmd@glosscs,
\ifilrr, , , ,

,
\IfNoValueT,
\ifprevhmode, ,

,
\IfValueF,
\IfValueT, , ,

, , ,
, ,

\IfValueTF, , ,
, , ,
, , ,

\ifvoid,
\ilju, p. ,
\ilrr, p. ,
ilrr, p.
\ilrrfalse,
\ilrrtrue,
\im@firstpar, ,

, , ,
,

\incl@DocInput, ,
, , ,
, ,

\incl@filedivtitle,
,

\incl@titletotoc, ,

\InclMaketitle, ,
\includeltpatch, ,

, ,
\incmd, p. ,
\incs, p. , ,
\index@macro, ,

, , ,
\index@prologue, ,

, ,
indexallmacros, p. ,
IndexColumns, p.
\indexcontrols, ,
\indexdiv, , ,

,

\indexentry,
\IndexInput, p. , ,

\IndexLinksBlack, p. ,

, , ,
\IndexMin, p. , ,

,
\IndexParms, p. , ,

, ,
\IndexPrefix, p. , ,

\IndexPrologue, p. ,

p. ,
\inenv, p. ,
\inhash,
\InputIfFileExists,
\inputlineno, , ,

,
\inverb, p. ,
\inverbpenalty, ,

\keepsilent,
\kernel@ifnextchar,
\kind@fentry, , ,

, ,
KVfam, p. ,
KVpref, p. ,

\last@defmark, ,
, , ,
, , ,
, ,

\LaTeXe, ,
\LaTeXpar, p.
\ldots,
\levelchar, p. , ,

, , ,
\licenseNoteLeaf,
\LineNumFont, p. ,

p. , , ,
, ,

\lineskip,
linesnotnum, p. ,
\listfiles,
\LoadClass, ,
lsu,
\ltxLookSetup, p. ,

, , ,
,

\ltxPageLayout, p. ,
,

\lv,

\macro, ,
macro, p. ,
macro⋆,
\macro@iname, ,

, , ,

, , ,
, ,

\macro@pname, ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, ,

\macrocode, ,
macrocode, p. , p. ,
macrocode⋆,
\MacrocodeTopsep,
\MacroFont, p. ,
\MacroIndent, p. ,
\MacroTopsep, p. ,

, , ,
,

\main,
\MakeGlossaryCon¦

trols, p. , ,

\MakePercentComment,
\MakePercentIgnore,

,
\MakePrivateLetters,

p. , p. , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, ,

\MakePrivateOthers,
, , ,
, , ,
, , ,
, , ,

\MakeShortVerb, p.
\makestarlow,
\mand, p. ,
\marginparpush,
\marginpartt, p. , ,

, , ,
\marginparwidth, ,
\mark@envir, , ,

\mathindent,
\maxdimen,
\maybe@marginpar, ,

\mcdiagOff,

\mcdiagOn, , ,
\mch,
\meta, p.
\metachar, ,
\MetaPrefix,
\MetaPrefixS,
minion, p. ,
\mod@math@codes, ,

, ,
\Module, ,
\ModuleVerb, ,
\ModuleVerbClose, ,

\month, , ,
mptt,
\Msg, , , , ,

, , , ,
\multiply,
mwart, p. ,
mwbk, p. ,
mwrep, p. , ,
myriad,

\n@melet, , ,
, , ,
, ,

\nacute, , ,
\Name, ,
\NamedInput@finish,
\NamedInput@prepare,
\narrationmark, p. ,

, , ,
, , ,
, , ,
, ,

\narrativett, , ,
, , ,
, , ,
, ,

NeuroOncer,
\newbox,
\newcount, , ,

, , ,
,

\newcounter, , ,
, , ,
,

\newdimen, , ,
\newgeometry,
\newgif, , , ,

, , ,
\newlength, , ,

, , ,
\newline,
\newlinechar, , ,

, ,
\newread,

\newskip, , ,
,

\newtoks, ,
\newwrite,
\nlperc, p. ,
\nlpercent, p. , ,

,
nochanges, p. ,
\noeffect@info, ,

, , ,
, , ,
,

\NoEOF,
noindex, p. , p. ,

,
nomarginpar, p. ,
\NonUniformSkips, p. ,

\NOO, , , , ,

,
\nostanza, p. ,
\noverbatimspecials,

,
\numexpr, , ,
\nX,

\obeyspaces, , ,

\ocircum, ,
\OCRInclude,
\oczko,
\oddsidemargin,
\oe,
\OK,
\old@MakeShortVerb,
oldcomments,
\olddocIncludes, p. ,

p. , , ,
,

\OldDocInput, p. , p. ,
, ,

\OldMacrocodes, p. ,
\OldMakeShortVerb,

, ,
\oldmc, ,
oldmc, p. ,
oldmc⋆,
\oldmc@def, ,
\oldmc@end, ,
\OnlyDescription, p. ,

,
\opt, p. ,
\oumlaut, , ,
outeroff, p. , ,
\outFileName, ,

\pack, ,

\PackageError, ,
, , ,
,

\PackageInfo, ,
\PackageWarningNo¦

Line,

\PageIndex, ,
pageindex, p. ,
pagella, p. ,
\pagenumbering, ,

\pagestyle, , ,

\par, , , ,

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
,

\paragraph,
\ParanoidPostsec,
\partopsep,
\PassOptionsToClass,

, , ,

\PassOptionsToPack¦
age, , ,
, , ,
, ,

\patchdate, , ,
,

\pdef, , , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, ,

\pdfeTeX, p.
\pdfTeX, p.
\perCent,
\perCentS,
\pk, p. , , , ,

, , ,
, , ,
, ,

\PlainTeX, p.

\pprovide,
\preamBeginningLeaf,
\preamEndingLeaf,
prefix,
\prependtomacro,
\prevhmodegfalse, ,

, , ,
\prevhmodegtrue,
\PrintChanges, p. ,

, , ,
, , ,
,

\PrintDescribeEnv, p.
\PrintDescribeMacro,

p.
\PrintEnvName, p.
\PrintFilesAuthors,

p. ,
\PrintIndex, , ,

, , ,
,

\printindex, , ,

\printlinenumber, ,
, ,

\PrintMacroName, p.
\ProcessOptionsX,
\protected, , ,
\provide, , ,
\ProvideFileInfo, p. ,

,
\ProvideSelfInfo,
\ProvidesFile,
\providesStatement,
\Provides�gmFileKind,
\ps@plain,
\ps@titlepage,

\qemph, p. ,
\qemph@, ,
\qfootnote, p. ,
\qfootnote@, ,
\quad, ,
\QueerCharOne, ,

,
\QueerCharTwo, ,

,
\QueerEOL, p. , ,

, , ,
, , ,
, ,

\QueerU, ,
\QueerUFont, ,
\QueerV, ,
quotation, p. ,
\quote@char, , ,

, ,

\quote@charbychar,
, , ,

\quote@mname, ,
, ,

\quotechar, p. , ,
, , ,
, , ,
,

\quoted@eschar, ,
, , ,
,

\raggedbottom,
\read,
\RecordChanges, p. ,

, , ,
, , ,
,

\relaxen, , ,
, , ,
,

\renewcommand, ,
, , ,

\RequirePackage, ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

\resetlinecountwith,
\Restore@Macro, ,

, , ,
, , ,
, , ,

\Restore@Macros,
\Restore@MacroSt, ,

, , ,
\RestoringDo,
\ResultsIn, ,
\ResumeAllDefining,

p. ,
\ResumeDef, p. ,
\ResumeDefining, p. ,

,
\reversemarginpar,
\rightline,

\SameAs,
\scan@macro, , ,

\scan@macro@, ,
\scantokens, , ,

, ,
\scanverb, , ,

, , ,
, , ,

\scshape,
\secondoftwo,
\SelfInclude, p. , ,

, ,
\SetFileDiv, p. , ,

, , ,
,

\setkeys, , ,
\setmainfont,
\setmonofont,
\setsansfont, ,

, ,
\settexcodehangi, ,

, , ,
\SetTOCIndents, ,
\sgtleftxii, ,
\SkipFilesAuthors,

p. ,
\skipgmlonely, p. ,

,
\skiplines, p. , ,
\SliTeX, p.
\smallerr,
\smallskipamount, ,

\smartunder, ,
\SMglobal, , ,

, , ,
, ,

\SortIndex,
\special, ,
\special@index, ,

, ,
\SpecialEnvIndex,
\SpecialEscapechar,
\SpecialIndex,
\SpecialMainEnvIndex,

\SpecialMainIndex,
\SpecialUsageIndex,
\spifletter, ,
\square,
StandardModuleDepth,
\stanza, p. , p. , ,

, ,
\stanzaskip, p. , ,

, , ,
, , ,
, ,

star, p. ,
\step@checksum, ,
\StopEventually, p. ,

, ,
\Store@Macro, ,

, , ,
, , ,

\Store@Macros, ,

\Store@MacroSt, ,
, ,

\stored@code@delim,
\storedcsname, ,
\StoreEnvironment,
\StoringAndRelax¦

ingDo,

\StraightEOL, p. , ,
, , ,
, , ,
, , ,
, ,

\strcmp, ,
\StreamPut,
\strip@bslash, ,

, ,
\subdivision, p. , ,

\subitem,
\subsubdivision, p. ,

,
\subsubitem,
\supposedJobname, ,
sysfonts, p. ,

\tableofcontents, ,
, , ,
, ,

\task, ,
\TB, p.
\TeXbook, p.
\texcode@hook, ,

, ,
\Text@CommonIndex,

,
\Text@CommonIndexStar,

,
\text@indexenvir, ,

, , ,
\text@indexmacro, ,

, , ,
\Text@Marginize, ,

, , ,
, , ,
, , ,
, ,

\Text@MarginizeNext,
, ,

\Text@UsgEnvir, ,
\Text@UsgIndex, ,
\Text@UsgIndexStar,

,
\Text@UsgMacro, ,
\TextCommonIndex, p. ,

\TextIndent, p. , ,
,

\TextMarginize, p. ,
\texttt, , ,

,
\TextUsage, p. ,
\TextUsgIndex, p. ,

,
\textwidth, , ,

,
\thanks, , , ,

, , ,
,

\theCodelineNo, p. ,
\thecodelinenum, ,

,
\thefilediv, , ,

, , ,
,

\theglossary,
theglossary,
theindex,
\thepart,
\thesection,
\thfileinfo, p. ,
tikz,
\title, , , ,

, , ,

\titlesetup, , ,

\toCTAN, p. ,
\tolerance,
\traceoff,
\traceon,
trebuchet, p. ,
\trimmed@everypar,

,
\ttverbatim, , ,

, ,
\twocoltoc, , ,

,
type, p. ,
\type@bslash,

\un@defentryze, ,
\un@usgentryze, ,
\UnDef, p. , , ,

, , ,

\UndoDefaultIndexEx¦
clusions, p. ,

\unexpanded, , ,
, , ,
, , ,

\ungag@index, ,
\unhbox,
\UniformSkips, p. ,

, , ,
\unless, , , ,

, , ,
,

\UnPdef, p. ,
\unvbox,
uresetlinecount, p. ,

\UrlFix,
\UrlFont,
\usage,
\usepackage, , ,

\usepreamble, ,
\UsgEntry, p. , ,
\uumlaut, , ,

\value,
\vcenter,
\verb, p. , , ,

, ,
\verb@balance@group,
\verb@egroup, ,
\verb@egroup@UV, ,

\verb@lasthook,
\verbatim, ,
\verbatim@specials,

, , ,
\verba¦

tim@specials@list,
,

\verbatimchar, p. ,
p. , , ,
, , ,

\VerbatimContents,
\verbatimfont, ,
\verbatimhangindent,
\verbatimleftskip,
\VerbatimPitch,

\verbatimspecials,
p. , p.

\verbcodecorr,
\verbeolOK, p.
\VerbHyphen,
\verbhyphen, , ,

,
\verbLongDashes,
\visiblespace, ,
\VisSpacesGrey, p. ,

,
\vsize,

\wd,
\Web, p.
\We¦

bern@Lieder@ChneOelze,

\widowpenalty,
withmarginpar, p. ,
\writefrom, ,
\WritePreamble,
\writeto, , , ,

,

\X@date, , ,
\xA, , , , , ,

, , , ,
, ,

\Xdef, ,
\xdef@filekey, ,

,
\Xedekfracc,
\XeTeX, p.
\XeTeXthree,
\xiiclub, ,
\xiihash, ,
\xiilbrace, ,
\xiipercent, , ,

, ,
\xiispace,
\xiistring, , ,

, ,
\Xpatch, ,

\year, , ,

\z@skip, ,
\zf@euencfalse,
\zf@init,

command)

 \let\PrintChanges\relax
 \let\PrintIndex\relax

 \gmdoccMargins
 \clearpage

 \csname␣@ifnotmw\endcsname{\pagestyle{headings}}{\pagestyle{%
outer}}

 \gmdocIncludes
 \SelfInclude{%
 \csname␣gag@index\endcsname% we turn writing outto the .idx out for the

driver since it’s not a part of The Source.
 }

 \end{document}

 To␣use␣this␣file␣to␣produce␣a␣fully␣indexed␣source␣code
 you␣need␣to␣execute␣the␣following␣(or␣equivalent)␣commands:

 latex␣sourcee_by_gmdoc.tex

 makeindex␣-s␣gmsourcee.ist␣sourcee_by_gmdoc.idx
 makeindex␣-s␣gmglo.ist␣-o␣sourcee_by_gmdoc.gls␣

sourcee_by_gmdoc.glo

 latex␣sourcee_by_gmdoc.tex
 latex␣sourcee_by_gmdoc.tex

 The␣makeindex␣style␣gmsourcee.ist␣is␣used␣in␣place␣of␣the␣
usual

 doc␣gind.ist␣to␣ensure␣that␣I␣is␣used␣in␣the␣sequence␣I␣J␣K
 not␣I␣II␣II,␣which␣would␣be␣the␣default␣makeindex␣behaviour.

 The␣third␣run␣with␣latex␣is␣only␣required␣to␣get␣the␣table␣of
 contents␣entries␣for␣the␣change␣log␣and␣index.␣You␣may␣speed␣

things␣up
 by␣using␣the␣\includeonly␣mechanism␣so␣as␣not␣to␣typeset␣the␣

source
 files␣on␣the␣second␣run.␣This␣involves␣changing␣the␣file
 ltxdoc.cfg
 between␣the␣latex␣runs.

 The␣following␣unix␣script␣automates␣this.
 (It␣could␣easily␣be␣ported␣to␣scripts␣for␣DOS␣or␣VMS,
 rm␣is␣ReMove␣a␣file,␣and␣echo␣"..."␣>␣file␣writes␣...␣to␣

"file".)

 After␣this␣script␣(after␣the␣second␣==============)␣is␣a␣
similar␣script

 that␣will␣produce␣the␣documentation␣for␣all␣the␣files␣in␣the␣
base

 distribution␣that␣are␣⋆not⋆␣included␣in␣sourcee.dvi.␣This␣
second␣script

 was␣requested,␣but␣before␣using␣it,␣beware␣it␣will␣take␣a␣
long␣time!

 It␣may␣however␣be␣modified␣as␣required,␣eg␣to␣not␣typeset␣the␣
fdd␣files

 or␣whatever...

 !!
 Natror␣(GM):␣I~didn't␣touch␣the␣following␣so␣it's␣probably␣

not␣quite␣suitable
 for␣gmdoc-ing.

 !!

 ==============
 #!/bin/sh

 rm␣␣-f␣sourcee_by_gmdoc.gls␣sourcee_by_gmdoc.ind␣
sourcee_by_gmdoc.toc

 #␣First␣run:
 #␣Create␣new␣standard␣ltxdoc.cfg␣file
 #␣Pass␣the␣(possibly␣empty)␣list␣of␣arguments␣supplied␣on␣the
 #␣command␣line␣to␣article␣class.
 #
 #␣If␣you␣use␣A␣paper,␣running␣this␣script␣with␣argument
 #␣␣␣␣apaper
 #␣may␣save␣about␣␣pages.
 #
 echo␣"\PassOptionsToClass{⋆}{article}"␣>␣ltxdoc.cfg

 #␣Now␣LaTeX␣the␣file␣with␣this␣cfg␣file.
 #
 latex␣sourcee.tex

 #␣Make␣the␣Change␣log␣and␣Glossary.
 #
 makeindex␣-s␣sourcee.ist␣sourcee.idx
 makeindex␣-s␣gglo.ist␣-o␣sourcee.gls␣sourcee.glo

 #␣Second␣run:␣append␣\includeonly{}␣to␣ltxdoc.cfg␣to␣speed␣up␣
things

 #␣(this␣run␣needed␣only␣to␣get␣changes␣and␣index␣listed␣in␣
.toc␣file)

 #
 #␣Note␣that␣the␣index␣will␣not␣be␣made␣incorrect␣by␣the␣

insertion
 #␣of␣the␣table␣of␣contents␣as␣the␣front␣matter␣uses␣a␣

diferent␣page
 #␣numbering␣scheme.
 #
 echo␣"\includeonly{}"␣>>␣ltxdoc.cfg

 latex␣sourcee.tex

 #␣Third␣and␣final␣run,␣to␣put␣everything␣together.
 #␣First␣restore␣the␣cfg␣file:
 #
 echo␣"\PassOptionsToClass{⋆}{article}"␣>␣ltxdoc.cfg
 latex␣sourcee.tex

 ==============
 #!/bin/sh

 #␣Running␣this␣script␣will␣process␣all␣the␣dtx␣fdd␣and␣
⋆guide.tex

 #␣and␣ltnews⋆.tex␣files␣in␣the␣LaTeX␣distribution,␣except␣the␣
dtx

 #␣files␣included␣in␣sourcee.tex.
 #␣(The␣shell␣first␣script␣in␣the␣comments␣of␣sourcee.tex␣will

 #␣␣process␣those.)

 #␣Any␣command␣line␣arguments␣(eg␣apaper)␣are␣taken␣as␣
options␣to␣the

 #␣article␣class.

 #␣This␣script␣is␣likely␣to␣take␣ages!

 echo␣"\PassOptionsToClass{⋆}{article}"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣>␣
ltxdoc.cfg

 echo␣"\batchmode"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣>>␣
ltxdoc.cfg

 #␣The␣next␣four␣lines␣produce␣full␣indexes␣and␣change␣logs
 #␣you␣may␣not␣want␣those.
 echo␣"\AtBeginDocument{\RecordChanges}"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣>>␣

ltxdoc.cfg
 echo␣"\AtEndDocument{\PrintChanges}"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣>>␣

ltxdoc.cfg
 echo␣"\AtBeginDocument{\CodelineIndex\EnableCrossrefs}"␣>>␣

ltxdoc.cfg
 echo␣"\AtEndDocument{\PrintIndex}"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣>>␣

ltxdoc.cfg

 #␣If␣you␣do␣not␣want␣any␣code␣listings,␣just␣documentation,␣
then␣instead

 #␣of␣the␣above␣four␣lines,␣uncomment␣the␣following:
 #␣echo␣"\AtBeginDocument{\OnlyDescription}"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣>>␣

ltxdoc.cfg

 echo␣"\PassOptionsToClass{⋆}{article}"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣>␣
ltxguide.cfg

 echo␣"\batchmode"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣>>␣
ltxguide.cfg

 cp␣ltxguide.cfg␣ltnews.cfg

 for␣i␣in␣⋆dtx␣⋆fdd␣⋆guide.tex␣ltnews⋆.tex
 do
 B=`basename␣i␣.dtx`

 if␣(grep␣"Include{B}"␣sourcee.tex␣>/dev/null␣;␣)
 then
 echo␣In␣sourcee:␣i
 else
 echo␣latex␣i
 if␣(latex␣i␣>␣/dev/null)
 then
 echo␣latex␣i
 latex␣i␣>␣/dev/null
 echo␣makeindex␣-s␣gind.ist␣B.idx
 makeindex␣-s␣gind.ist␣B.idx␣>␣/dev/null␣>␣/dev/null
 echo␣makeindex␣-s␣gglo.ist␣-o␣B.gls␣B.glo
 makeindex␣-s␣gglo.ist␣-o␣B.gls␣B.glo␣>␣/dev/null␣>␣

/dev/null
 echo␣latex␣i
 latex␣i␣>␣/dev/null

 else
 echo␣"!!!␣LaTeX␣ERROR:␣i.␣(See␣B.log.)"
 fi
 fi

 done
 〈/ LaTeXsource〉
 〈⋆docbygmdoc〉
 \PassOptionsToPackage{hyperindex=false}{hyperref}% Because FMwrites

some almost explicit indexing commands where he uses ‘encapsulating’ i.e.,
a command to encapsulate the page number, which would interfere with hy-
perref’s default |hyperpage.

 \documentclass[countalllines,
 codespacesblank,␣outeroff,␣pagella,␣cronos,␣cursor,
 fontspec=quiet]{gmdocc}
 \usepackage{array}

 \VisSpacesGrey

 \def\BasePath{/home/natror/texmf/source/latex/base/}% Of course, you\BasePath
should change it to the respective path on your computer.

 \ltxLookSetup
 \gmdoccMargins
 \olddocIncludes% This is the crucial declaration.
 \twocoltoc

 \DeleteShortVerb\|
 \OldMakeShortVerb⋆\|
 \HideAllDefining

 \makeatletter

 \edef\gmd@wykrzykniki{\xiihash\space\xiihash\space}
 \edef\gmd@wykrzykniki{\gmd@wykrzykniki\gmd@wykrzykniki}
 \edef\gmd@wykrzykniki{\gmd@wykrzykniki\gmd@wykrzykniki}
 \edef\gmd@wykrzykniki{\gmd@wykrzykniki\gmd@wykrzykniki}

 \author{Frank␣Mittelbach␣\and␣David␣Carlisle}
 \title{The␣\pk{doc}␣and␣\pk{shortvrb}␣Packages\\␣and\\
 the␣\pk{ltxdoc}␣Class}
 \date{Typeset␣with␣the␣\pk{gmdoc}␣package␣by␣Natror\\\today}

 \errorcontextlines=
 \fooatletter{%
 \typeout{@@@@@␣\meaning\@begindocumenthook}}
 \begin{document}

 \smartunder

 \typeout{@@@@␣in␣document}

 \maketitle
 \typeout{@@@@␣after␣title}

 \addtocontents{toc}{% to discard \begin{multicols}{} of one included
document. (Table of contents is declared twocolumn with \twocoltoc
above.)

 \let\protect\begin\protect\@gobbletwo

 \protect\Store@Macro\protect\end
 \def\protect\end{\protect\Restore@Macro\protect\end%

\protect\@gobble}%
 }% Because one document has a multicols twocolumn table of contents and the

other has usual one column, this will put entire toc in(to) multicols.

 \tableofcontents

 \makeatletter
 \AfterMacrocode{}{% it’s for a tiny little typo in line : They forgot to

wrap \@tempb and \@tempc in shortverbs.
 \def\@tempb{\cs{@tempb}␣}\def\@tempc{\cs{@tempc}␣}}\@tempc

 \AtBegInputOnce{%
 \chschange{v.b}{//}{}%
 \let\CheckSum\gobble

Of course, none of the documents is not loaded, so we give the fileinfo explicitly.

 \def\filedate{//}\def\fileversion{v.b}%\filedate
\fileversion \let\GetFileInfo\relax

 \addtomacro\IndexParms{\arraybackslash}}% because\IndexParmsuse
\raggedright and FM executes \IndexParms inside a tabular.

 \DocInclude[\BasePath]{doc}

 \AtBegInputOnce{%
 \chschange{v.u}{//}{}%
 \let\CheckSum\gobble
 \def\filedate{//}␣\def\fileversion{v.u}% see line .\filedate

\fileversion \let\GetFileInfo\relax

The rest of this \AtBegInputOnce’s contents is necessary since DC wrote it not
commented out, which with doc results with printing it both to the package (class) and
the documentation, but with gmdoc it puts this stuff in the code layer that’ll be only
printed verbatim.

 \providecommand\dst{\expandafter{\normalfont\scshape␣\dst
docstrip}}

 \title{The␣file␣\texttt{ltxdoc.dtx}␣for␣use␣with
 \LaTeXe.\thanks{This␣file␣has␣version
 number␣\fileversion,␣dated␣\filedate.}\\[pt]
 It␣contains␣the␣code␣for␣\texttt{ltxdoc.cls}}
 \date{\filedate}
 \author{David␣Carlisle}
 \maketitle}

 \DocInclude[\BasePath]{ltxdoc}%

 \gmdocIncludes

 \AtBegInputOnce{%
 \title{\pk{doc_by_gmdoc.tex}␣The␣Driver\thanks{As␣mentioned␣

in␣the
 title,␣I~typeset␣these␣package␣and␣class␣with␣the␣\pk{%

gmdoc}
 package,␣for␣which␣are␣they␣a~great␣inspiration␣and␣the␣

base.

 The␣typesetting␣needed␣only␣a~few␣tricks,␣so␣here␣
i~give␣the

 code␣of␣the␣`driver':␣a~snake␣eats␣its␣tail␣;-)␣.}}
 \author{Grzegorz␣`Natror'␣Murzynowski}%
 \date{\today}%
 \maketitle}
 \SelfInclude

 \typeout{%
 Produce␣change␣log␣with^^J%
 makeindex␣-r␣-s␣gmglo.ist␣-o␣\jobname.gls␣\jobname.glo^^J
 (gmglo.ist␣should␣be␣put␣into␣some␣texmf/makeindex␣

directory.)^^J}
 \PrintChanges
 \typeout{%
 Produce␣index␣with^^J%
 makeindex␣-r␣\jobname^^J}
 \PrintIndex

 \end{document}

MakeIndex shell commands:

 makeindex␣-r␣doc_gmdoc
 makeindex␣-r␣-s␣gmglo.ist␣-o␣doc_gmdoc.gls␣doc_gmdoc.glo

_ bf: _ bfseries _

 〈/ docbygmdoc〉
 \endinput

End of file ‘gmdoc.gmd’.

〈eof〉

Change History

gmdoc changed
\c@ChangesStartDate:

from TEX’s arithmetic to \numexpr,
gmdoc v.

\edverbs:
used to simplify displaying shortverbs,

gmdoc v.
General:

CheckSum ,
gmdoc v.

General:
CheckSum ,

\OK:
The gmeometric option made
obsolete and the gmeometric package
is loaded always, for
X ETEX-compatibility. And the class
options go xkeyval.,

gmdoc v.
General:

CheckSum ,
\OK:

Bug fix of sectioning commands in
mwcls and the default font encoding
for TEXing old way changed from QX
to T because of the ‘corrupted NTFS
tables’ error,

gmdoc v.
General:

CheckSum ,
\OK:

Added the pagella option not to use
Adobe Minion Pro that is not freely
licensed,

gmdoc v.
General:

CheckSum ,

gmdoc v.
General:

CheckSum ,
CheckSum ,

gmcc@fontspec:
added,

gmdoc v.
General:

put to CTAN on //,
gmdoc v.

General:
CheckSum ,
CheckSum because of
\verbatimspecials, hyphenation
in verbatims etc.,

CheckSum ,
\ac:

added,
countalllines:

gmdoc option here executed by default,

gmcc@cronos:
added, for Iwona sans font,

gmcc@cursor:
added, for TEX Gyre Cursor mono font,
which I embolden a little and shrink
horizontally a little,

subtly distinguished weights of the
TEX Gyre Cyursor typewriter font in
the code and in verbatims in the
commentary,

\gmcc@dff:
I commented out setting of Latin
Modern fonts for sans serif and
monospaced: X ETEX/fontspec does
that by default.,

gmcc@lsu:
added, for Lucida Sans Unicode sans
font,

gmcc@myriad:
added, for Myriad Web Pro sans font,

gmcc@trebuchet:
added, for Trebuchet MS sans font,

\LineNumFont:
added,

gmdoc v.
General:

CheckSum because of abandoning
gmeometric since geometry v..
provides \newgeometry,

gmdoc v.
\gmFileKind:

CheckSum ,
gmdoc v.d

\c@ChangesStartDate:
An entry to show the change history
works: watch and admire. Some sixty

\changes entries irrelevant for the
users-other-than-myself are hidden
due to the trick described on p. .

gmdoc v.
\gmFileKind:

CheckSum because of
compatibilising the enumargs
environment with
\DeclareCommand of gmutils v..;
abandoning gmeometric,

put to CTAN on //,
gmdoc v.

\ds:
\CS etc. definitions moved to gmmeta
(part of gmutils),

gmdoc v.
General:

CheckSum ,
CheckSum ,
CheckSum ,

\verb@egroup:
due to troubles with bad fontification
in the narration layer I implement the
counterpart to \narrativett:
\codett, which is \tt by default so
it even may be transparent to the
users.,

gmdoc v.a
\gmFileKind:

CheckSum ,
gmdoc v.b

General:
Thanks to the \edverbs declaration in
the class, displayed shortverbs
simplified; Emacs mode changed to
doctex. Author’s true name more
exposed,

gmdoc v.c
General:

A bug fixed in \DocInput and all
\expandafters changed to \@xa
and \noexpands to \@nx,

The TEX-related logos now are
declared with \DeclareLogo
provided in gmutils,

\DocInput:
added ensuring the code delimiter to
be the same at the end as at the
beginning,

\gmd@bslashEOL:
a bug fix: redefinition of it left solely to
\QueerEOL,

gmdoc v.d
General:

\@namelet renamed to \n@melet to
solve a conflict with the beamer class
(in gmutils at first),

\afterfi & pals made two-argument,

\FileInfo:
added,

gmdoc v.e
General:

a bug fixed in \DocInput and
\IndexInput,

\gmFileKind:
CheckSum ,

gmdoc v.g
General:

The bundle goes X ETEX. The
TEX-related logos now are moved to
gmutils. ^^A becomes more
comment-like thanks to
re\catcode’ing. Automatic
detection of definitions implemented,

\gmFileKind:
CheckSum ,

hyperref:
added bypass of encoding for loading
url,

\OldDocInput:
obsolete redefinition of the macro
environment removed,

quotation:
added,

gmdoc v.h
General:

Fixed behaviour of sectioning
commands (optional two heading
skip check) of mwcls/gmutils and
respective macro added in gmdocc.
I made a tds archive,

gmdoc v.i
General:

A “feature not bug” fix: thanks to
\everyeof the \[No]EOF is now not
necessary at the end of \DocInput
file.,

\gmFileKind:
CheckSum ,

gmdoc v.j
\gmFileKind:

CheckSum ,
quotation:

Improved behaviour of redefined
quotation to be the original if used
by another environment.,

gmdoc v.k
\gmFileKind:

CheckSum ,
hyperref:

removed some lines testing if X ETEX
colliding with tikz and most probably
obsolete,

gmdoc v.l
\CodeSpacesGrey:

added due to Will Robertson’s
suggestion,

codespacesgrey:
added due to Will Robertson’s
suggestion,

\FileInfo:
\scantokens used instead of \write
and \@@input which simplified the
macro,

\gmd@writeckpt:
Made a shorthand for
\Docinclude\jobname instead of
repeating % of \DocInclude’s
code,

\gmFileKind:
CheckSum ,

macrocode:
removed \CodeSpacesBlank,

gmdoc v.m
\@oldmacrocode@launch:

renamed from \VerbMacrocodes,
^^M:

there was \let^^M but \QueerEOL is
better: it also redefines \^^M,

General:
Counting of all lines developed (the
countalllines package option),
now it uses \inputlineno,

\changes:
changed to write the line number
instead of page number by default
and with codelineindex option
which seems to be more reasonable
especially with the countalllines
option,

\DocInclude:
resetting of codeline number with
every \filedivname commented
out because with the
countalllines option it caused
that reset at \maketitle after some
lines of file,

\FileInfo:
\egroup of the inner macro moved to
the end to allow \gmd@ctallsetup.
From the material passed to
\gmd@FIrescan ending ^^M
stripped not to cause double labels.,

\gmd@bslashEOL:
also \StraightEOL with
countalllines package option lets
\^^M to it,

\gmFileKind:
CheckSum ,
CheckSum ,

\thefilediv:
let to \relax by default,

theglossary:
added \IndexLinksBlack,

gmdoc v.n
General:

In-line comments’ alignment
developed,

c@gmd@mc:
developed for the case of in-line
comment,

\DeclareVoidOption:
Added the starred version that hides
the defining command only once,

\finish@macroscan:
the case of \␣ taken care of,

\gmboxedspace:
added \hboxes in \discretionary
to score \hyphenpenalty not
\exhyphenpenalty,

\gmd@eatlspace:
\afterfifi added—a bug fix,

\gmd@percenthack:
\space replaced with a tilde to forbid
a line break before an in-line
comment,

\gmFileKind:
CheckSum ,
CheckSum ,

\ilrr:
added,

\nostanza:
added adding negative skip if in
vmode and \par,

\pprovide:
added the starred version that calls
\UnDef,

a bug fixed: \gmd@charbychar
appended to \next—without it
a subsequent in-line comment was
typeset verbatim,

\verbcodecorr:
added,

gmdoc v.o
\@codetonarrskip:

a bug fix: added \@nostanzagtrue,
c@gmd@mc:

added the optional argument which is
the number of hashes (by default or
 or),

gmdoc v.p
c@gmd@mc:

added optional arguments’ handling,
\DeclareCommand:

added,
\gmFileKind:

CheckSum ,
gmdoc v.q

\gmFileKind:
CheckSum ,

gmdoc v.r
\gmFileKind:

CheckSum ,
put to CTAN on //,

\PrintChanges:
added,

gmdoc v.s
General:

\@bsphack—\@esphack added to
\TextMarginize, \Describe,
\DescribeMacro and
\DescribeEnv,

\gmd@ifinmeaning moved to gmutils
and renamed to \@ifinmeaning,

c@gmd@mc:
added \StraightEOL to let the in-line
comment continue after this
environment,

\Code@UsgEnvir:
added \@sanitize in the starred
version,

\DeclareOption:
declared as defining if without star
because \DeclareOption⋆ doesn’t
define a named option and so it
doesn’t have a text argument,

\egText@Marginize:
a bug fixed: braces added around #,

\FileInfo:
added assignment of \newlinechar,

\gmboxedspace:
\newcommand⋆ replaced with \pdef
and optional argument’s declaration
removed since nothing is done to #
in the body of now-macro. Wrapped
in a group for setting
\hyphenpenalty,

\gmd@ABIOnce:
deferred till the end of package to
allow adding titles
\AtBegInputOnce,

\gmFileKind:
CheckSum because of enumargs
handling the argument types of
\DeclareCommand; handling
\verbatimspecials, including
writing them to index; introduction of
\narrativett including
\ampulexdef of gmverb internals,

\narrationmark:

added and
introduced—\code@delim forked to
what delimits the code
(\code@delim) and what is typeset
at the boundary of code:
\narrationmark,

\narrativett:
introduced in gmutils and employed in
the narrative verbatims, including
\ampulexdef of the gmverb macros,

\PrintChanges:
added,
made a shorthand for \chgs not
\changes,

\step@checksum:

!⋆!⋆!… sequence changed to ! ! !…
for better distinction,

added,
\Text@UsgEnvir:

added \@sanitize in the starred
version,

\titlesetup:
a bug fixed: \if\relax\@date
changed to \ifx,

gmdoc v.t
General:

Since geometry v.. gmeometric is
obsolete so was removed,

gmdoc v.
\gmd@chgs:

made \long (consider it a bug fix),
,

	Readme
	Installation
	Contents of the gmdoc.zip archive
	Compiling of the documentation
	Bonus: base drivers

	Introduction
	The user interface
	Used terms
	Preparing of the source file
	The main input commands
	Package options
	The packages required
	Automatic marking of definitions
	Manual marking of the macros and environments
	Index ex/inclusions
	The DocStrip directives
	The changes history
	The parameters
	The narration macros
	A queerness of label
	doc-compatibility

	The driver part
	The code
	The package options
	The dependencies and preliminaries
	The core
	Numbering (or not) of the lines
	Spacing with everypar
	Life among queer EOLs
	Adjustments of verbatim and verb
	Macros for marking of the macros
	Automatic detection of definitions
	DeclareDefining and the detectors
	Default defining commands
	Suspending (`hiding') and resuming detection

	Indexing of
	Index exclude list
	Index parameters
	The DocStrip directives
	The changes history
	The checksum
	Macros from ltxdoc
	DocInclude and the ltxdoc-like setup
	Redefinition of maketitle
	The file's date and version information
	Miscellanea
	doc-compatibility
	gmdocing doc.dtx

	OCRInclude
	Polishing, development and bugs
	[No] eof
	Intro
	Usage
	The Code
	The gmoldcomm package
	Some Typesetting Remarks
	The Body
	Index
	Change History

